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ABSTRACT 
One of the major challenges in Computer Graphics concerns the 

3D representation and physically-based simulation of garments. In 

our research, we are working closely with the textile industry, 

investigating three different classes of problems. First, we aim at 

developing techniques and methods for cloth simulation 

specifically aimed at the Web3D context. Second, we are defining 

a cross-application data exchange format among the different 

CAD systems and applications used in the textile industry, 

including the additional information needed to support 3D 

simulations. Third, we are implementing a tool that complements 

traditional textile CAD systems (which are based on 2D graphics), 

allowing the user to automatically obtain VRML-based 3D 

previews of the garment (for evaluating garment designs and also 

easily publishing them on the Web). This paper illustrates the 

results we have achieved in these three directions.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object 

Modeling – Physically based modeling. I.3.6 [Computer 

Graphics]: Methodology and Techniques – Interaction 

techniques and standards. I.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism – Animation, and virtual 

reality.  H.5.1[Information Interfaces and Presentation]:

Multimedia Information Systems – Artificial, augmented, and 

virtual realities. J.6 [Computer-Aided Engineering]: Computer-

aided design (CAD).

General Terms
Algorithms, Performance, Design, Standardization. 

Keywords
Physically-based simulation, virtual clothing, cross-application 

data exchange format for the textile industry,  CAD tools for 

garment design, Product Visualization, VRML/Java, XML.

1. INTRODUCTION 
Physically-based computer animation is one of the relevant 

research areas in Computer Graphics [17]. One of the several 

challenges in this area concerns the 3D representation and 

simulation of garments. This is crucial for industries as different 

as the movie industry (that needs to include very realistic 

animated characters in its productions) and the fashion and textile 

industry, whose purpose is twofold: on one side, they would like 

to build virtual prototypes of garments for evaluating a design 

without the need for actually producing it; on the other side, they 

would like to develop virtual try-on applications allowing 

consumers to see how a garment fits on their individual body 

measures.  

An ideal 3D garment simulation should be both very efficient 

(e.g., real-time animation) and high-fidelity (e.g., deformations of 

cloth caused by the shape of a specific human body, different 

behaviors determined by the materials of which the garment is 

made). Unfortunately, the high computational complexity of the 

simulation makes it very difficult to achieve both goals: existing 

systems are tailored to favor one of the two. Systems that are 

capable of real-time animation can produce impressive results, but 

are of scarce interest to the textile industry, because the obtained 

results are not reliable and cannot be used to predict how the 

actual garment will look and behave in the physical world. High-

fidelity simulation of a garment might require hours of 

computation to produce a few seconds of animation. However, 

while its results are highly realistic and satisfactory from the point 

of view of the movie industry, it still presents open issues (e.g., 

integration with existing textile design tools) from the point of 

view of the fashion designer. In our research, we are working 

closely with the textile industry (in particular, with the Benetton 

Group), investigating three different classes of problems.  

First, we are developing techniques for cloth simulation aimed at 

building a garment simulation engine for the Web3D context. 

Second, we are defining a cross-application data exchange format 

aimed at allowing data interchange among the different CAD 

systems and applications used in the textile industry, including the 

additional information needed to support 3D simulations.   

Third, we are implementing a tool that complements traditional 

textile CAD systems (which are based on 2D graphics), allowing 

the user to automatically obtain VRML-based 3D previews of the 

garment (for evaluating garment designs and also easily 

publishing them on the Web). The tool is based on the previously 

mentioned simulation engine and interchange format. 

This paper illustrates the results we have achieved in the three 

directions. 



2. THE TEXTILE INDUSTRY CONTEXT 
In this section, we briefly illustrate the typical design and 

production chain followed in the textile industry, to better 

motivate the need for 3D virtual prototyping systems.  

Garment production starts from garment conception and  design. 

For many new concepts of garment, tailors must be involved in 

the design process to produce actual prototypes for evaluation and 

market research purposes. Results of market research can lead to 

discarding the design or changing it (in the latter case,  another 

prototype needs to be produced and evaluated). This is a very 

expensive iterative process for the industry: for any accepted 

design, many more are discarded and will not go into production. 

Since the production process is based on cutting and stitching 

together parts of cloth, traditional textile CAD systems are aimed 

at drawing these 2D parts and driving automatic cutting 

procedures (e.g., Gerber Technology [11], Investronica Sistemas 

[13]). Procedures for stitching parts (and accessories such as 

buttons, zips,...) are not handled by the CAD system and require 

human operators to program the stitching machines. 

To improve the efficiency of the garment conception and design 

phase, a proposed solution is to adopt virtual prototyping 

techniques. Exploiting 3D virtual garment models would allow 

the industry to dramatically reduce both the time before going to 

market and the work costs. Moreover, virtual prototypes can be 

reused for an additional purpose, i.e. 3D product visualization on 

the Web.   

It must be noted that 3D virtual prototyping requires to extend 

existing CAD systems (or propose tools that complement them) to 

handle additional information (e.g., stitching data) needed to 

define the 3D model and to provide high fidelity simulation of the 

garment. Unfortunately, no solutions have been yet proposed for 

these problems in the textile industry. 

In our research, we are pursuing both goals to propose an 

integrated system. In particular, we aim at defining a flexible 

simulation engine that allows the user to choose the desired 

tradeoff between performance and fidelity. For example, given a 

short computation time, one could choose between an high fidelity

garment simulation in a static mannequin positions or an high 

performance garment simulation on animated mannequins.   

3. A QUICK INTRODUCTION TO GARMENT 

SIMULATION  
Garment simulation and visualization is a complex task that can 

be subdivided in four main subtasks:  

• Geometrical definition of garment parts and of objects that 

will interact with the garment (e.g, a specific human body); 

• Optical laws simulation (rendering); 

• Dynamic laws simulation (forces, accelerations, velocities, 

energies); 

• Interaction with the environment (collision detection and 

response). Garment simulation is mainly concentrated on the 

interaction between the different parts of the garment and the 

virtual body (mannequin).  

While, the first two issues are classic 3D graphics problems, the 

last two require to face the following problems:  

• Cloth behaviour simulation: cloth simulation concerns the 

mechanical model adopted for garment parts behaviour 

approximation. It can be a parametric model to allow different 

material simulation (e.g., cotton, wool, silk,...). 

• Handling of constrictions: constrictions concern limitations of 

garment movement such as those caused by the seams 

between parts of a garment or by placing the garment on a 

coat hanger.

• Collision detection: Collisions must be detected between the 

garment and the human body as well as garment parts 

themselves (self-collisions). 

• Physically-based response: Every collision needs a response 

to avoid interpenetration and simulate friction and bouncing 

effects. 

Initial work on the simulation of garments [10] concentrated only 

on the geometrical features of deforming cloth, while the first 

physically-based models were proposed in the early ‘90s [6] [20]. 

Different physically-based approaches have been proposed, e.g. 

some exploit particles systems for mechanical simulation [5][8] 

while others employ continuous models resolved by finite 

elements [9]. Although finite elements have shown the greatest 

accuracy (at high computational costs), particles systems became 

the preferred approach in the computer graphics community for 

their simplicity, flexibility and their fidelity/performance ratio.  

In general, computational costs are mainly due to numerical 

integration of the ODE (Ordinary Differential Equation) systems 

that model the cloth, and to collision detection needs. From the 

point of view of numerical integration, existing approaches might 

use either explicit or implicit methods. Classic explicit integration 

methods such as Euler, Midpoint, or Runge-Kutta are relatively 

easy to implement, but need very small integration steps to 

guarantee system stability. Implicit methods (e.g., the implicit 

versions of the three classic methods mentioned above) are able to 

use larger steps without loss of stability, but are more complex to 

implement because they need to solve large linear systems at 

every integration step. The use of implicit methods in cloth 

simulation was first proposed by [2]. 

From the point of view of collision detection, heuristics are 

typically used to limit the number of collision tests to be 

performed. In particular, the most used heuristics are space 

subdivision (e.g., voxel, octree, bounding-box) and hierarchical 

orders. A specific problem of cloth simulation is the need of 

managing self-collisions. To this purpose, good results have been 

achieved in [21] where the global surface is partitioned in smaller 

parts whose dimension is inversely proportional to the curvature 

of the parts themselves. This subdivision allows one to avoid 

performing self-collision tests on those parts that do not reach the 

needed curvature.     

4. A JAVA/VRML CLOTH SIMULATOR  
As we have previously seen, garment simulation is a complex task 

both from a conceptual and computational point of view. 

Research in this field often exploits very fast and expensive 

graphics workstations and proprietary environments. In our work, 

we are interested in exploiting conventional hardware and 

platform-independent software to be used also on the Web.  

In this Section, we propose a cloth simulation engine based on 

VRML and Java. First, we illustrate the modelling and 

algorithmic choices we made; then, we discuss how they were 

implemented in VRML/Java.      

4.1 Simulation method 
One of the main tradeoffs in cloth simulation is the one between 

fidelity and performance. Considering the intended context of use 

for our simulator, we offer some variable settings by which the 



user can choose to trade some performance in favor of more 

fidelity or vice versa. A generic physically-based simulator runs in 

a loop, containing the following four main activities [17]: 

• Force computation: there are a lot of forces to be managing 

for reproduce real world phenomena. Gravity for example is a 

most important one, but other forces such as air viscosity and 

wind improve the simulation fidelity. More kinds of force we 

consider, more results are similar to real world ones.  

• Collision detection: graphical objects are defined 

geometrically and  located in a 3D virtual environment; when 

two objects reach a contact point (or a interpenetration) the 

collision detection algorithm musts to recognise it and notify 

the details to collision response task.

• Collision response:  the collision between two objects 

produces forces that modify positions and velocities according 

with conservation laws when collision is elastic, otherwise 

with energy dispersion. 

• State integration: simulator works by discrete time steps. 

When forces are computed these produces acceleration on 

objects. During time step this acceleration is considered 

constant and so we can use cinematic laws or advanced 

integration techniques for compute new object positions.    

For animation purposes, we need to know particles position at 

close time instants (e.g., the temporal distance between one 

position and the following one should be 33ms to obtain a 30fps 

animation). However, stable state integration often requires 

smaller integration steps.       

4.1.1 The Adopted Mechanical model and Super-elasticity 

Issues 
For cloth modeling purposes, we adopt a particle system approach 

based on a mass-spring model. In the literature, the mass-spring 

model is widely used to simulate any elastic body. A typical good 

topology for a mass-spring model aimed at cloth simulation is 

illustrated in Figure 1. The nodes represent mass elements, the 

arcs between nodes represent spring elements, and the modeler 

can define several parameters such as particle mass value; elastic 

constants for traction (in weft and warp direction), bending (in 

weft and warp direction), shearing; constants for damping, friction 

and bouncing.  

By using different settings for the parameters, it is possible to 

simulate different kinds of cloth. For example, Figure 6 shows the 

simulation of two different cloths (the right one is lighter and 

more elastic than the left one).  

A well known problem of mass-spring models is the super-

elasticity effect, i.e. small elastic constant produce unrealistic 

cloth behaviour (due to excessive spring extension). A simple way 

to minimize this undesired effect is to decrease elasticity settings, 

but, as a result, the ODE system that models the mass-spring 

topology can become stiff, and lead to instability.    

There are both numerical and empirical solutions to the super-

elasticity problem. Numerical solutions are based on implicit 

integration, but its implementation is complex as already 

mentioned in Section 3. Empirical solutions for explicit methods 

have been proposed by [16] [19] and are based on limiting the 

extension of the spring. More specifically, Provot [16] 

manipulates directly the position of particles when the extension 

becomes excessive, and then applies an inverse dynamics 

procedure for the global distribution of modifications (this 

procedure ends up adding computation time). The approach by 

Vassilev [19] temporarily sets to zero the extension velocity of 

those particles that are showing super-elasticity effects to prevent 

further extensions (note that, in explicit integration methods, the 

position of a particle at time t+1 is given by its position at time t

plus its velocity multiplied by the integration step).  

Unfortunately, this solution produces discontinuous (unrealistic) 

behaviours. 

Figure 1. Mass-spring topology: a) global structure;  

b) vertical and horizontal springs; c) shearing springs;  

d) bending springs. 

However, the super-elasticity effect tends to affect meshes whose 

resolution (i.e., the number of mass and spring elements for 

unitary area) is high. Therefore, our system adopts the following 

approach. If the user requires a fast simulation by setting a low 

resolution for the mesh, we do not take actions to prevent super-

elasticity effects (because they are minimal), and we instead 

concentrate on reducing anti-aesthetic effects (due to the large 

area of polygons in a low-resolution mesh). To do so in a simple 

and efficient way, we increase the “creaseAngle” parameter of 

IndexedFaceSet. This setting allows one to control when the 

smoothing of edges performed by the VRML rendering engine 

should be performed. The creaseAngle is a threshold: if the 

angle between two edges is less than creaseAngle, then the 

smoothing is performed, otherwise the faces will appear faceted 

(see Figure 2).   

Figure 2. The same geometric model with a low value (left), 

and an high  value (right) of creaseAngle .



If the user trades efficiency in favor of more fidelity by increasing 

the resolution of the mesh, the system offers the possibility of 

increasing rigidity settings (to minimize super-elasticity effects) 

and decreasing the size of the integration step (to prevent 

instability).   

4.1.2 Forces 
Time evolution of particle system is determined by resultant 

forces exerted on each particle. Some forces originate from 

internal factors in the mechanical model of the cloth, other are 

due to external environmental factors such as gravity, viscosity, 

wind, constriction and collision. We consider all these 

contributions and compute the resulting force for each particle by 

using the following equations:  
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where m is the particle mass, g the gravitational constant, fg the 

gravitational force, v is the particle velocity,  kv is the fluid (e.g., 

air, water) viscosity constant, fv is the viscosity force, l is the 

spring length (between two particles), l’ is the elongation 

velocity, r is the rest position of the spring, ke is the elastic 

constant of the spring (Young module), kd the damping constant 

of the spring, fe is the elastic force exerted on the particle linked 

to the spring (- fe in the case of the particle linked to the other 

side).    

Wind forces are proportional to scalar product between wind 

direction and the normal of each face of the cloth.  

4.1.3 Collision detection and response 
The algorithms we currently use compute collisions by using 

geometric data from IndexedFaceSet VRML nodes. 

Geometrical detection of collisions is simply performed from each 

particle of the cloth and each face of the colliding object. We are 

working to improve this naive method using space subdivision 

techniques. Collision response modifies forces and velocities as 

described in [15]. This technique allows us to control friction and 

bouncing effects.  

4.1.4 Numerical integration 
Given the resulting force that acts on a particle we can compute 

its new position in 3D space using Newton’s first law and classic 

cinematic laws.     

More specifically, from equation f = ma (where f  is the 

resultant force vector acting on the particle, and m its mass value), 

we obtain a (the acceleration vector). 

Considering the one-dimensional case, continuous cinematic law 

at constant acceleration x = d
2
a/dt

2
determines the position of the 

particle at time t. Introducing velocity, one obtains two 

differential equations:  v = da/dt and x = dv/dt. The state of a 

particle at time t is completely determined by position and 

velocity values. In the 3D case, we represent this by the vector  

[x1 x2 x3 v1 v2 v3], a generic element of a six-dimensional phase 

space. This notation allow us to write the differential operator as 

follows:  

x = [x1 x2 x3 v1 v2 v3]

x’ = [x’1 x’2 x’3 v’1 v’2 v’3] = [v1 v2 v3 f1/m f2/m f3/m] 

Suppose that force f = [f1  f2  f3] depends only on x and t, we 

can write the ODE: 

x’ =  F(x, t)

Starting from an initial value x0 = x(t0), we can solve the ODE 

with several integration methods. Our simulation engine 

implements three explicit methods: Euler, Midpoint, and fourth-

order Runge-Kutta.  

The simplest method (Euler) produces an approximation value as 

follows: 

x(t0 + h) = x0 + hx’(t0)

where h is the integration step. 

This method is formally justified by Taylor’s series: 

x(t0 + h) = x0 + hx’(t0) + (h2/2!)x’’(t0) + (h3/3!)x’’’(t0) + 

…+ (hn/n!)(∂ n
x/∂ tn)+ … 

where one can easily notice that the Euler method is based on 

deleting the parts of the series that contain higher order 

derivatives. Accuracy of approximation is determined by the 

temporal extent of the integration step and the size of the values 

of the higher order derivatives that have been ignored by the 

method.   

Midpoint methods uses instead the following equation: 

x(t0 + h) = x0 + h(f(x0 + (h/2)f(x0))

Finally, these are the equations of fourth-order Runge-Kutta: 

k1 = hf(x0, t0 )

k2 = hf(x0 + k1/2, t0 + h/2)

k3 = hf(x0 + k2/2, t0 + h/2)

k4 = hf(x0 + k3, t0 + h)

x(t0 + h) = x0 + (1/6) k1 + (1/3) k2 + (1/3) k3 + (1/6) k4

For the mathematical justification of these methods, we refer the 

reader to numerical analysis textbooks (e.g. [3][7]).  

The use of implicit methods has not been considered to avoid 

increasing the complexity of the simulator.   

4.2 Simulating cloth parts and garments 
The simulation method described in the previous section has been 

implemented with a Java class. We now introduce the three main 

VRML nodes (SimulationScript, Garment and ObjectCollider

PROTOs) that allow one to invoke the simulation method inside 

the 3D world. The physics simulation obtainable with these nodes 

considers gravity, viscosity, wind and collision detection between 

a textile part and a user-defined object (it will be typically a 

mannequin, but it can also be any other object, e.g., a chair or 

table). The structure of the SimulationScript node is the 

following:

1 DEF SimulationScript Script
2  {         
3 mustEvaluate TRUE 
4 eventIn SFTime DefineClothGeometry 
5 eventIn SFTime ComputeNewFrame  
6   
7 field SFNode garment USE UserDefinedGarment 
8 field SFNode collider USE UserDefinedObject 
9
10 field SFFloat viscosity_const 0.2 



11 field SFFloat x_wind_intensity 10.0 
12 field SFFloat y_wind_intensity 10.0 
13 field SFFloat z_wind_intensity -100.0 
14 field SFFloat wind_turbulence 10.0 
15 field SFFloat integration_step 0.0025 
16 field SFInt32 ODESolverType 0 
17 field SFInt32 iterations 
18 eventOut MFVec3f coord 
19 eventOut MFInt32 coordIndex 
20 eventOut MFVec2f texturecoord 
21 eventOut MFInt32 texturecoordIndex 
22 eventOut MFVec3f collisioncoord 
23 eventOut MFInt32 collisioncoordIndex 
24  
25 url "Simulator.class" 
26 }

This node is responsible to communicate all the needed 

parameters to the simulation engine, that is encapsulated in the 

Java class “Simulator.class” (line 25). At line 3, the 

mustEvaluate flag tells the player that it cannot ignore the script 

execution. At line 4 and 5, two eventIn are respectively used to 

initialize (DefineClothGeometry) the simulator and require the 

production of new animation frames (ComputeNewFrame). At 

line 7 and 8, one can specify a garment (garment field) and an 

object that might collide with it (collider field). At line 10, 

viscosity determines the resistance of the fluid (typically air) into 

which cloth is immersed. Line 11 through 14 contain wind 

parameters (direction and turbulence). At line 15, 16 and 17, one 

can respectively specify the integration step, choose the 

integration method (Euler, Midpoint, Runge-Kutta) and set the 

number of iterations that the integration method has to perform 

for each generated frame. Lines 18 through 23 contain eventOut
events: coord and coordIndex control the garment geometry, 

texturecoord and texturecoordIndex control the texture 

mapping on the garment, the last two events allow the simulator 

to control the geometry of the possibly colliding object. 

The Garment PROTO is defined as follow: 

1 PROTO Garment  
2  [ 
3 exposedField MFVec3f coordinate [] 
4 exposedField MFInt32 index [] 
5 exposedField SFVec3f size 1 1 1 
6 exposedField SFRotation rotation 0 0 1 0 
7 exposedField SFVec3f translation 0 0 0 
8
9 exposedField SFInt32 weft_particles_num 50 
10 exposedField SFInt32 warp_particles_num 50 
11 exposedField SFFloat particle_mass 0.1 
12 exposedField SFFloat weft_elastic_const 1800 
13 exposedField SFFloat warp_elastic_const 1800 
14 exposedfield SFFloat 
   weft_bending_elastic_const 400 
15 exposedfield SFFloat
   warp_bending_elastic_const 400 
16 exposedfield SFFloat
   shear_elastic_const 400 
17 exposedfield SFFloat
   elastic_damping_const 0.1 
18 exposedfield SFFloat 
    objectcloth_friction_const .5 
19 exposedfield SFFloat 
    objectcloth_damping_const .3 
20 
21 eventIn MFVec3f coordIN 
22 eventIn MFInt32 indexIN 
23 eventIn MFVec2f texturecoordIN 
24 eventIn MFInt32 textureindexIN 
25 ]    
26 { 

27 Shape
28 { 
29 geometry DEF GarmentShape IndexedFaceSet
30  { 
31   coord DEF GarmentCoord Coordinate  32
   { point IS coordinate }  
33   coordIndex [] 
34   solid FALSE
35   creaseAngle 3.1 
36   texCoord DEF TextureCoord  
    TextureCoordinate { point [] } 
37   texCoordIndex [] 
38  } 
39 appearance Appearance {…} 
40 } 
41 DEF EventLinkScript Script {…}
42 }

GarmentShape (line 29) is an IndexedFaceSet that defines the 

initial garment geometry (automatically generated with the tool 

we describe in Section 5.2). Every vertex of the GarmentShape 

corresponds to a particle. The change of the particle position 

computed by the simulator class produces the change of the 

GarmentShape geometry. Parameters at line 9 and 10 allow one to 

choose the number of particles in the mesh, while line 11 defines 

the particle mass. Line 12 through 17 contain the parameters for 

the springs. They control respectively elastic extension in weft 

and warp direction, elastic bending in weft and warp direction, 

elastic shearing and the damping constant for all these spring 

types. Lines 18 and 19 specify the object-cloth collision 

parameters: the friction and the damping constants respectively 

determine the sliding and bouncing behaviors of the particles over 

the object. EventLinkScript (line 41) is needed to link the 

eventIn events of the PROTO to the GarmentShape elements 

(e.g., the event coordIN is linked to GarmentShape coordinates).  

The UserDefinedObject (line 8 of SimulatorScript) is an 

instance of the ObjectCollider PROTO:

PROTO ObjectCollider  
[

exposedField MFVec3f coordinate [] 
exposedField MFInt32 index [] 
exposedField SFVec3f size 1 1 1 
exposedField SFRotation rotation 0 0 1 0 
exposedField SFVec3f translation 0 0 0 

   
eventIn MFVec3f coordIN 
eventIn MFInt32 indexIN 

]

Its structure is very simple and allows one to define an 

IndexedFaceSet using coordinate and index

exposedFields.

The following is the event sequence that controls a simulation 

(Agarment is an instance of the Garment PROTO and Acollider is 

an instance of the ObjectCollider PROTO):

1 ROUTE Touch.touchTime  
2 TO SimulationScript.DefineClothGeometry 
3 ROUTE Touch.touchTime 
4 TO Timer.startTime 
5 ROUTE Timer.cycleTime 
6 TO SimulationScript.ComputeNewFrame 
7 ROUTE SimulationScript.coord  
8 TO Agarment.coordIN 
9 ROUTE SimulationScript.coordIndex  
10 TO Agarment.indexIN  
11 ROUTE SimulationScript.texturecoord  
12 TO Agarment.texturecoordIN 



13 ROUTE SimulationScript.texturecoordIndex  
14 TO Agarment.textureindexIN 
15 ROUTE SimulationScript.collisioncoord  
16 TO Acollider.coordIN 
17 ROUTE SimulationScript.collisioncoordIndex  
18 TO Acollider.indexIN 

The TouchSensor called Touch (line 1) is used to start the 

simulation: its eventOut is routed into SimulationScript to 

initialize the simulation. SimulationScript accepts the event and 

builds both the particle system and the coordinates of the 

GarmentShape. The same TouchSensor starts a TimerSensor
called Timer (lines 3-4), that sends to SimulationScript (lines 5-6) 

a cycleTime event every 25ms. As a response, SimulationScript

computes a new frame, returning the new coordinates and texture 

mapping for GarmentShape (lines 7-14), and the coordinates for 

the possible colliding object (lines 15-18).

The Java class responds to the ComputeNewFrame eventIn with 

the following code:  

1 if(event_name.equals("ComputeNewFrame")) 
2  { 
3   int it; 
4
5     for(it=0; it<iterations; it++) 
6      Integration();  
7
8     // EventOut: 
9     coord_obj.setValue(position); 
10 }

that performs a number of numeric integration steps equal to those 

specified by the iteration variable. Assuming that the user has 

selected the Euler method, integration will be performed by 

calling the following function: 

1 private void EulerStep() 
2 { 
3   int i; 
4   float sim = integrationStep/particleMass; 
5    
6   ComputeForces(); 
7   ComputeCollisions(); 
8
9   for(i=0; i<num_particles; i++) 
10   { 
11     velocity[i][0]+=sim*force[i][0]; 
12     velocity[i][1]+=sim*force[i][1]; 
13    velocity[i][2]+=sim*force[i][2]; 
14  position[i][0]+= 
   integrationStep*velocity[i][0]; 
15  position[i][1]+= 
   integrationStep*velocity[i][1]; 
16  position[i][2]+= 
   integrationStep*velocity[i][2]; 
17    } 
18    time+=step; 
19 }

This method executes the four main tasks introduced in section 

4.1: line 6 calls the force computation function; line 7 calls the 

collision detection and response functions; line 9 through 18 

perform state integration. More specifically, position, velocity and 

force are two-dimensional float vectors, whose length is the 

number of particles in the system. For example, the i-th particle is 

located in 3D space at (position[i][0], position[i][1],

position[i][2]).    

Figure 4 illustrates an example where a single cloth part is used to 

simulate a rectangular textured flag subject to wind forces. The 

cloth is fixed to a flagstaff by applying a constriction to the 

position of upper left and upper right particles.     

A more complex example is illustrated in Figure 3 and Figure 5 

where a complete garment is simulated.  This requires to manage 

the garment seams: the effects of stitching is computed at 

simulation time, by applying non-linear elastic forces to the 

different sets of particles that have to be joined, assembling the 

garment around the virtual body. Figure 3 shows the stitching 

process of a top on a female body. Figure 5 illustrates the final 

results of the simulation of the considered top and a skirt. 

4.3 System performance 
The current version of the system is able to provide real-time 

simulation on common PCs when the mass-spring system is in the 

1000-3000 particles range. For example, the cloth shown in 

Figure 4 is based on 900 (30x30) particles to which gravity, 

viscosity, constriction, elastic, and wind forces have been applied: 

a simulation performed with the Euler method (integration step  

4ms) returns acceptable animation frame rates even on low-end 

PCs, e.g. we obtain 18 fps on a laptop equipped with AMD 

Mobile Athlon 4 at 1.2 GHz, 256Mb Ram, graphic card  S3 

Twister 16Mb, using the Cortona 4 player. On the same low-end 

hardware, the simulation shown in Figures 3 and 5 takes ten 

minutes (including the stitching phase) before reaching a stable 

state; the shirt is based on a 2500 particles grid; the skirt on 2500 

additional particles, and the body is made of 5000 triangles. 

In general, the most computationally expensive task is given by 

the naive collision detection algorithm, which is the part of the 

system that needs more improvements. 

Figure 7 shows how the accuracy of the simulation can be flexibly 

changed by setting the resolution of the grid. The upper images 

(shaded at left, wireframed at right) use a low resolution  mesh, 

allowing for real-time animation even on low-end PCs. The lower 

images use a higher resolution; aesthetic results improve but 

computational costs are four times higher.  

From the point of view of downloading times on the Internet, it 

must be noted that the proposed approach allows one to obtain 

files of minimum size that contain complex animations: this is due 

to the fact that the animation does not need to be pre-compiled 

and included in the file. For example, the animated flag illustrated 

in Figure 4 requires to download only 26Kb (3Kb for the VRML 

file, 19Kb for the Java class, 4Kb for textures). We made some 

files available for download at [12]. 

5. AN INTEGRATED 3D GARMENT PROTYPING 

ENVIRONMENT 
A garment has its own 2D geometrical definition stored in CAD 

files (usually in proprietary formats). This basic 2D data must be 

complemented by additional information for 3D simulation 

purposes: for example, traditional CAD systems do not typically 

include information such as physical properties of the textile 

materials, textures, and precise seam information among the 

designed 2D shapes. Some of this information is recorded (after 

the garment prototyping phase is completed) on paper forms 

aimed at the different operators involved in the production phase. 

A complete garment description is thus fragmented along the 

production process and a significant part of the seams data is not 

available in electronic format. In this way, the information shared 

between the prototyping and the production phase is only the one 

contained in the traditional CAD file. 



Figure 3. Four stitching phases (This figure is reproduced in 

color on page X). 

Figure 4. A simulation screenshot: a flag in the wind [12] (This 

figure is reproduced in color on page X). 

Figure 5.  Simple garment fits a virtual body (This figure is 

reproduced in color on page X). 

Figure 6. Two different cloth types (This figure is reproduced 

in color on page X). 



Figure 7. Low mesh resolution (upper images), and high mesh resolution (lower images) [12].  

 Geometrical information in current CAD files can be directly 

used by a possible design and simulation tool, but it is not 

sufficient to build and simulate a virtual garment prototype. The 

tool should thus take care of representing additional information 

such as seams, grades, textile types (or  properties), colors, 

accessories. An ideal tool should allow to integrate all the 

different tasks needed to proceed from concept design to 

production. To pursue this goal, we have first defined an 

interchange file format (section 5.1) that can be shared among all 

tasks; then we developed a tool (section 5.2) able to support the 

user in defining a complete garment description based on the 

format, that can be immediately fed into the previously described 

cloth simulator. 

5.1 The XVC (eXtensible Virtual Clothing) 

interchange format  
The final purpose of our XVC format (eXtensible Virtual 

Clothing) is to collect together and organize all the information 

needed to represent a garment, including that required for 3D 

simulation purposes. XVC has been defined in XML. An XVC 

document is organized in three abstraction layers. The lowest 

layer is composed by XML entities we call basicData and can be 

of the following types:  

• C2D: 2D coordinate;

• C2DSEQ: sequence of C2D entities;

• SCALE2D: 2D scale data;

• ROTATION2D: 2D rotation data;

• COLORRGBA: color data in RGBA format;

• SIZE: garment size data (such as S, M, L, XL);

• HEM: data about stitchable areas;

• PARAMETER: parameter value (e.g., physical parameters 

such as weight, elasticity,...);

• ASSOCIATION: association between entities (e.g., it can be 

used to associate a texture to a part of cloth);

• POSITION: geometric position data (e.g., it can be used to 

indicate where a pocket is on a trouser).

These basicData entities are assembled into module structured 

entities at the upper level; modules can be of the following types: 

• PATTERN: geometric definition of garment parts; 

• SEAM: definition of garment seams; 

• GRADATION: complete garment grade data; 



• MATERIAL: data about mechanical textile properties; 

• TEXTURE: images to apply on patterns; 

• ACCESSORY: information about buttons or other extras. 

Finally, the highest layer is composed by XML entities called 

containers, that are used to assemble modules or other containers 

to define a full garment. For each type of module, there is a 

container aimed at grouping together different instances of that 

module: for example, several garment parts (each one represented 

by a PATTERN module) can be grouped by a PATTERNS 

container. GARMENT is the top container of the hierarchy, 

representing the unique root of the XML document. Reasons of 

space do not allow us to fully describe XVC; in the following, we 

illustrate it with an example.  

A GARMENT container includes an identification number (ID), 

possibly the format version followed by a number of other 

containers or modules identified by their IDs. The following is an 

example of a possible GARMENT: 

<?xml version="1.0" encoding="UTF-8" ?>

- <GARMENT ID="1S001" version="1.0">

+ <PATTERNS ID="1S001.PATTERNS0">

+ <GRADATIONS ID="1S001.GRADATIONS1">

+ <SEAMS ID="1S001.SEAMS2">

+ <TEXTURES ID="1S001.TEXTURES3">

</GARMENT>

Each of the 4 containers in the example includes a number of 

corresponding modules. For example, if we expand the 

PATTERNS container, we obtain:

<?xml version="1.0" encoding="UTF-8" ?>

- <GARMENT ID="1S001" version="1.0">

- <PATTERNS ID="1S001.PATTERNS0">

+ <PATTERN ID="P01" piecename="…">

+ <PATTERN ID="P02" piecename="…">

+ <PATTERN ID="P03" piecename="…">

</PATTERNS>

+ <GRADATIONS ID="1S001.GRADATIONS1">

+ <SEAMS ID="1S001.SEAMS2">

+ <TEXTURES ID="1S001.TEXTURES3">

</GARMENT>

where three modules of type PATTERN are identified by their 

IDs. If we expand one of the patterns we obtain a number of 2D 

coordinate sequences. The following listing shows an expansion 

of the P01 pattern and of two of its enclosed coordinate 

sequences: 

<?xml version="1.0" encoding="UTF-8" ?>

- <GARMENT ID="1S001" version="1.0">

- <PATTERNS ID="1S001.PATTERNS0">

- <PATTERN ID="P01" piecename="…">

- <C2DSEQ ID="C01">

<C2D x="-31.226" y="0.0" />

</C2DSEQ>

- <C2DSEQ ID="C02">

<C2D x="-32.347" y="24.307" />

<C2D x="-33.742" y="48.593" />

</C2DSEQ>

+ <C2DSEQ ID="C03">

+ <C2DSEQ ID="C04">

+ <C2DSEQ ID="C05">

+ <C2DSEQ ID="C06">

+ <C2DSEQ ID="C07">

</PATTERN>

+ <PATTERN ID="P02" piecename="…">

+ <PATTERN ID="P03" piecename="…">

</PATTERNS>

+ <GRADATIONS ID="1S001.GRADATIONS1">

+ <SEAMS ID="1S001.SEAMS2">

+ <TEXTURES ID="1S001.TEXTURES3">

</GARMENT>

The concatenation of the 2D coordinates contained in a 

PATTERN allows one to draw a cloth part. Figure 8 shows an 

example concerning a part of trousers; the upper part of the figure 

shows the full pattern, while the lower part shows more in detail 

its geometric definition.   

The separation of a pattern in subsequences (C2DSEQ) allows 

one to identify hems for the garment. This is needed to keep 

information about seams (in the SEAMS container). An example 

of a SEAM module is the following: 

- <SEAM ID="S01">

<HEM ID="H01" direction="normal" from="C01"

to="C04" type="normal" />

<HEM ID="H02" direction="normal" from="C15"

to="C18" type="normal" />

</SEAM>

the module includes a number of HEMs to be stitched together. 

Each HEM has two attributes (from and to) that identify 

sequences of points (C2DSEQ) contained in the PATTERN 

modules. The other attributes of HEM (direction and type) are 

needed to complete the specification of them seam, allowing to 

assemble the garment. 

Parsing and visualizing an XVC document is made easier by 

resorting to XSL (eXtensible Stylesheet Language).  A complete 

description of the XVC format is provided in [10].  

5.2 The VIGDES (VIrtual Garment DESigner) tool 
VIGDES (VIrtual Garment DESsigner) is a prototype tool that 

complements the activities usually performed with a 2D textile 

CAD, aiming at adding the previously mentioned data needed for 

3D simulations by relying on the previously described XVC 

format, and then producing 3D garment previews by exploiting 

the proposed cloth simulator. The prototype is compatible with 

existing 2D textile CAD systems, because it is able to import DXF 

files with the AAMA (American Apparel Manufacturers 

Association) extension, that is the currently available interchange 

format for 2D garment data. Finally, the system imports also 

textures (in jpeg, gif, png, and tiff formats). As shown by the 

architecture in Figure 9, other main parts of the prototype concern 

its user interface, whose primary goal is to allow fast data 

insertion for garment description. Figure 10 shows a screenshot of 

the interface. It is composed by three main windows: the tree view 



of the XVC document (on the left), the graphics window (on the 

right) and a multi-tab window for  data editing and context dialogs 

(on the lower part of the screen). The tree window allows for 

object selection and high-level operation (add, delete, copy and 

paste of XML nodes). After selecting a node on the tree, the user 

can edit the node properties through a specific edit window. The 

graphics window allows for typical 2D CAD operations and 

specific additional tasks such as stitching. In Figure 10, the user 

has just completed the specification of seams among 2D cloth 

shapes (imported from a traditional CAD) and is ready to get a 3D 

preview of the resulting pair of trousers. 

Figure 8. An example of “PATTERN” module, “C2DSEQ” and “C2D” basicData. 

Figure 9. VIGDES architecture. 



Figure 10. The VIGDES user interface. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we have presented three main results of our research 

projects: the Java/VRML cloth simulator, the XVC interchange 

format, and the VIGDES design tool.  

We are currently working at further improving the simulator in 

two main directions. First, one has to consider that some garment 

is a complex assembly of different parts (often made of different 

textile materials) and its structure is sometimes multi-layered (e.g., 

a pocket stitched on a shirt). The current version of the simulator 

is instead limited to single-layer, single-material garment. We are 

thus working on a version of the simulator that independently 

considers the different textile parts and also the collisions among 

them. Second, further improvements in efficiency can be gained 

by changing the current simple implementation of collision 

detection, and experimenting with new explicit integration 

methods that have been recently proposed in the field of 

Numerical Analysis. 

From the point of view of aiding the garment designer in easily 

using our tool, we are working at extending the 3D preview 

capabilities of VIGDES, by including standard sizing systems 

used in the textile industry, and parametric mannequins for virtual 

try-on purposes. 
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