
3D Virtual Clothing: from Garment Design

to Web3D Visualization and Simulation

Luca Chittaro

HCI Lab, Dept. of Math and Computer Science
University of Udine

via delle Scienze 206, 33100 Udine, Italy
+39 0432 558450

chittaro@dimi.uniud.it

Demis Corvaglia

HCI Lab, Dept. of Math and Computer Science
University of Udine

via delle Scienze 206, 33100 Udine, Italy

ABSTRACT
One of the major challenges in Computer Graphics concerns the

3D representation and physically-based simulation of garments. In

our research, we are working closely with the textile industry,

investigating three different classes of problems. First, we aim at

developing techniques and methods for cloth simulation

specifically aimed at the Web3D context. Second, we are defining

a cross-application data exchange format among the different

CAD systems and applications used in the textile industry,

including the additional information needed to support 3D

simulations. Third, we are implementing a tool that complements

traditional textile CAD systems (which are based on 2D graphics),

allowing the user to automatically obtain VRML-based 3D

previews of the garment (for evaluating garment designs and also

easily publishing them on the Web). This paper illustrates the

results we have achieved in these three directions.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling – Physically based modeling. I.3.6 [Computer

Graphics]: Methodology and Techniques – Interaction

techniques and standards. I.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism – Animation, and virtual

reality. H.5.1[Information Interfaces and Presentation]:

Multimedia Information Systems – Artificial, augmented, and

virtual realities. J.6 [Computer-Aided Engineering]: Computer-

aided design (CAD).

General Terms
Algorithms, Performance, Design, Standardization.

Keywords
Physically-based simulation, virtual clothing, cross-application

data exchange format for the textile industry, CAD tools for

garment design, Product Visualization, VRML/Java, XML.

1. INTRODUCTION
Physically-based computer animation is one of the relevant

research areas in Computer Graphics [17]. One of the several

challenges in this area concerns the 3D representation and

simulation of garments. This is crucial for industries as different

as the movie industry (that needs to include very realistic

animated characters in its productions) and the fashion and textile

industry, whose purpose is twofold: on one side, they would like

to build virtual prototypes of garments for evaluating a design

without the need for actually producing it; on the other side, they

would like to develop virtual try-on applications allowing

consumers to see how a garment fits on their individual body

measures.

An ideal 3D garment simulation should be both very efficient

(e.g., real-time animation) and high-fidelity (e.g., deformations of

cloth caused by the shape of a specific human body, different

behaviors determined by the materials of which the garment is

made). Unfortunately, the high computational complexity of the

simulation makes it very difficult to achieve both goals: existing

systems are tailored to favor one of the two. Systems that are

capable of real-time animation can produce impressive results, but

are of scarce interest to the textile industry, because the obtained

results are not reliable and cannot be used to predict how the

actual garment will look and behave in the physical world. High-

fidelity simulation of a garment might require hours of

computation to produce a few seconds of animation. However,

while its results are highly realistic and satisfactory from the point

of view of the movie industry, it still presents open issues (e.g.,

integration with existing textile design tools) from the point of

view of the fashion designer. In our research, we are working

closely with the textile industry (in particular, with the Benetton

Group), investigating three different classes of problems.

First, we are developing techniques for cloth simulation aimed at

building a garment simulation engine for the Web3D context.

Second, we are defining a cross-application data exchange format

aimed at allowing data interchange among the different CAD

systems and applications used in the textile industry, including the

additional information needed to support 3D simulations.

Third, we are implementing a tool that complements traditional

textile CAD systems (which are based on 2D graphics), allowing

the user to automatically obtain VRML-based 3D previews of the

garment (for evaluating garment designs and also easily

publishing them on the Web). The tool is based on the previously

mentioned simulation engine and interchange format.

This paper illustrates the results we have achieved in the three

directions.

2. THE TEXTILE INDUSTRY CONTEXT
In this section, we briefly illustrate the typical design and

production chain followed in the textile industry, to better

motivate the need for 3D virtual prototyping systems.

Garment production starts from garment conception and design.

For many new concepts of garment, tailors must be involved in

the design process to produce actual prototypes for evaluation and

market research purposes. Results of market research can lead to

discarding the design or changing it (in the latter case, another

prototype needs to be produced and evaluated). This is a very

expensive iterative process for the industry: for any accepted

design, many more are discarded and will not go into production.

Since the production process is based on cutting and stitching

together parts of cloth, traditional textile CAD systems are aimed

at drawing these 2D parts and driving automatic cutting

procedures (e.g., Gerber Technology [11], Investronica Sistemas

[13]). Procedures for stitching parts (and accessories such as

buttons, zips,...) are not handled by the CAD system and require

human operators to program the stitching machines.

To improve the efficiency of the garment conception and design

phase, a proposed solution is to adopt virtual prototyping

techniques. Exploiting 3D virtual garment models would allow

the industry to dramatically reduce both the time before going to

market and the work costs. Moreover, virtual prototypes can be

reused for an additional purpose, i.e. 3D product visualization on

the Web.

It must be noted that 3D virtual prototyping requires to extend

existing CAD systems (or propose tools that complement them) to

handle additional information (e.g., stitching data) needed to

define the 3D model and to provide high fidelity simulation of the

garment. Unfortunately, no solutions have been yet proposed for

these problems in the textile industry.

In our research, we are pursuing both goals to propose an

integrated system. In particular, we aim at defining a flexible

simulation engine that allows the user to choose the desired

tradeoff between performance and fidelity. For example, given a

short computation time, one could choose between an high fidelity

garment simulation in a static mannequin positions or an high

performance garment simulation on animated mannequins.

3. A QUICK INTRODUCTION TO GARMENT

SIMULATION
Garment simulation and visualization is a complex task that can

be subdivided in four main subtasks:

• Geometrical definition of garment parts and of objects that

will interact with the garment (e.g, a specific human body);

• Optical laws simulation (rendering);

• Dynamic laws simulation (forces, accelerations, velocities,

energies);

• Interaction with the environment (collision detection and

response). Garment simulation is mainly concentrated on the

interaction between the different parts of the garment and the

virtual body (mannequin).

While, the first two issues are classic 3D graphics problems, the

last two require to face the following problems:

• Cloth behaviour simulation: cloth simulation concerns the

mechanical model adopted for garment parts behaviour

approximation. It can be a parametric model to allow different

material simulation (e.g., cotton, wool, silk,...).

• Handling of constrictions: constrictions concern limitations of

garment movement such as those caused by the seams

between parts of a garment or by placing the garment on a

coat hanger.

• Collision detection: Collisions must be detected between the

garment and the human body as well as garment parts

themselves (self-collisions).

• Physically-based response: Every collision needs a response

to avoid interpenetration and simulate friction and bouncing

effects.

Initial work on the simulation of garments [10] concentrated only

on the geometrical features of deforming cloth, while the first

physically-based models were proposed in the early ‘90s [6] [20].

Different physically-based approaches have been proposed, e.g.

some exploit particles systems for mechanical simulation [5][8]

while others employ continuous models resolved by finite

elements [9]. Although finite elements have shown the greatest

accuracy (at high computational costs), particles systems became

the preferred approach in the computer graphics community for

their simplicity, flexibility and their fidelity/performance ratio.

In general, computational costs are mainly due to numerical

integration of the ODE (Ordinary Differential Equation) systems

that model the cloth, and to collision detection needs. From the

point of view of numerical integration, existing approaches might

use either explicit or implicit methods. Classic explicit integration

methods such as Euler, Midpoint, or Runge-Kutta are relatively

easy to implement, but need very small integration steps to

guarantee system stability. Implicit methods (e.g., the implicit

versions of the three classic methods mentioned above) are able to

use larger steps without loss of stability, but are more complex to

implement because they need to solve large linear systems at

every integration step. The use of implicit methods in cloth

simulation was first proposed by [2].

From the point of view of collision detection, heuristics are

typically used to limit the number of collision tests to be

performed. In particular, the most used heuristics are space

subdivision (e.g., voxel, octree, bounding-box) and hierarchical

orders. A specific problem of cloth simulation is the need of

managing self-collisions. To this purpose, good results have been

achieved in [21] where the global surface is partitioned in smaller

parts whose dimension is inversely proportional to the curvature

of the parts themselves. This subdivision allows one to avoid

performing self-collision tests on those parts that do not reach the

needed curvature.

4. A JAVA/VRML CLOTH SIMULATOR
As we have previously seen, garment simulation is a complex task

both from a conceptual and computational point of view.

Research in this field often exploits very fast and expensive

graphics workstations and proprietary environments. In our work,

we are interested in exploiting conventional hardware and

platform-independent software to be used also on the Web.

In this Section, we propose a cloth simulation engine based on

VRML and Java. First, we illustrate the modelling and

algorithmic choices we made; then, we discuss how they were

implemented in VRML/Java.

4.1 Simulation method
One of the main tradeoffs in cloth simulation is the one between

fidelity and performance. Considering the intended context of use

for our simulator, we offer some variable settings by which the

user can choose to trade some performance in favor of more

fidelity or vice versa. A generic physically-based simulator runs in

a loop, containing the following four main activities [17]:

• Force computation: there are a lot of forces to be managing

for reproduce real world phenomena. Gravity for example is a

most important one, but other forces such as air viscosity and

wind improve the simulation fidelity. More kinds of force we

consider, more results are similar to real world ones.

• Collision detection: graphical objects are defined

geometrically and located in a 3D virtual environment; when

two objects reach a contact point (or a interpenetration) the

collision detection algorithm musts to recognise it and notify

the details to collision response task.

• Collision response: the collision between two objects

produces forces that modify positions and velocities according

with conservation laws when collision is elastic, otherwise

with energy dispersion.

• State integration: simulator works by discrete time steps.

When forces are computed these produces acceleration on

objects. During time step this acceleration is considered

constant and so we can use cinematic laws or advanced

integration techniques for compute new object positions.

For animation purposes, we need to know particles position at

close time instants (e.g., the temporal distance between one

position and the following one should be 33ms to obtain a 30fps

animation). However, stable state integration often requires

smaller integration steps.

4.1.1 The Adopted Mechanical model and Super-elasticity

Issues
For cloth modeling purposes, we adopt a particle system approach

based on a mass-spring model. In the literature, the mass-spring

model is widely used to simulate any elastic body. A typical good

topology for a mass-spring model aimed at cloth simulation is

illustrated in Figure 1. The nodes represent mass elements, the

arcs between nodes represent spring elements, and the modeler

can define several parameters such as particle mass value; elastic

constants for traction (in weft and warp direction), bending (in

weft and warp direction), shearing; constants for damping, friction

and bouncing.

By using different settings for the parameters, it is possible to

simulate different kinds of cloth. For example, Figure 6 shows the

simulation of two different cloths (the right one is lighter and

more elastic than the left one).

A well known problem of mass-spring models is the super-

elasticity effect, i.e. small elastic constant produce unrealistic

cloth behaviour (due to excessive spring extension). A simple way

to minimize this undesired effect is to decrease elasticity settings,

but, as a result, the ODE system that models the mass-spring

topology can become stiff, and lead to instability.

There are both numerical and empirical solutions to the super-

elasticity problem. Numerical solutions are based on implicit

integration, but its implementation is complex as already

mentioned in Section 3. Empirical solutions for explicit methods

have been proposed by [16] [19] and are based on limiting the

extension of the spring. More specifically, Provot [16]

manipulates directly the position of particles when the extension

becomes excessive, and then applies an inverse dynamics

procedure for the global distribution of modifications (this

procedure ends up adding computation time). The approach by

Vassilev [19] temporarily sets to zero the extension velocity of

those particles that are showing super-elasticity effects to prevent

further extensions (note that, in explicit integration methods, the

position of a particle at time t+1 is given by its position at time t

plus its velocity multiplied by the integration step).

Unfortunately, this solution produces discontinuous (unrealistic)

behaviours.

Figure 1. Mass-spring topology: a) global structure;

b) vertical and horizontal springs; c) shearing springs;

d) bending springs.

However, the super-elasticity effect tends to affect meshes whose

resolution (i.e., the number of mass and spring elements for

unitary area) is high. Therefore, our system adopts the following

approach. If the user requires a fast simulation by setting a low

resolution for the mesh, we do not take actions to prevent super-

elasticity effects (because they are minimal), and we instead

concentrate on reducing anti-aesthetic effects (due to the large

area of polygons in a low-resolution mesh). To do so in a simple

and efficient way, we increase the “creaseAngle” parameter of

IndexedFaceSet. This setting allows one to control when the

smoothing of edges performed by the VRML rendering engine

should be performed. The creaseAngle is a threshold: if the

angle between two edges is less than creaseAngle, then the

smoothing is performed, otherwise the faces will appear faceted

(see Figure 2).

Figure 2. The same geometric model with a low value (left),

and an high value (right) of creaseAngle .

If the user trades efficiency in favor of more fidelity by increasing

the resolution of the mesh, the system offers the possibility of

increasing rigidity settings (to minimize super-elasticity effects)

and decreasing the size of the integration step (to prevent

instability).

4.1.2 Forces
Time evolution of particle system is determined by resultant

forces exerted on each particle. Some forces originate from

internal factors in the mechanical model of the cloth, other are

due to external environmental factors such as gravity, viscosity,

wind, constriction and collision. We consider all these

contributions and compute the resulting force for each particle by

using the following equations:

()
l

l

l

ll'
lf

vf

gf

e

v

g

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⋅+−−=

=

=

de

v

krk

-k

m

where m is the particle mass, g the gravitational constant, fg the

gravitational force, v is the particle velocity, kv is the fluid (e.g.,

air, water) viscosity constant, fv is the viscosity force, l is the

spring length (between two particles), l’ is the elongation

velocity, r is the rest position of the spring, ke is the elastic

constant of the spring (Young module), kd the damping constant

of the spring, fe is the elastic force exerted on the particle linked

to the spring (- fe in the case of the particle linked to the other

side).

Wind forces are proportional to scalar product between wind

direction and the normal of each face of the cloth.

4.1.3 Collision detection and response
The algorithms we currently use compute collisions by using

geometric data from IndexedFaceSet VRML nodes.

Geometrical detection of collisions is simply performed from each

particle of the cloth and each face of the colliding object. We are

working to improve this naive method using space subdivision

techniques. Collision response modifies forces and velocities as

described in [15]. This technique allows us to control friction and

bouncing effects.

4.1.4 Numerical integration
Given the resulting force that acts on a particle we can compute

its new position in 3D space using Newton’s first law and classic

cinematic laws.

More specifically, from equation f = ma (where f is the

resultant force vector acting on the particle, and m its mass value),

we obtain a (the acceleration vector).

Considering the one-dimensional case, continuous cinematic law

at constant acceleration x = d
2
a/dt

2
determines the position of the

particle at time t. Introducing velocity, one obtains two

differential equations: v = da/dt and x = dv/dt. The state of a

particle at time t is completely determined by position and

velocity values. In the 3D case, we represent this by the vector

[x1 x2 x3 v1 v2 v3], a generic element of a six-dimensional phase

space. This notation allow us to write the differential operator as

follows:

x = [x1 x2 x3 v1 v2 v3]

x’ = [x’1 x’2 x’3 v’1 v’2 v’3] = [v1 v2 v3 f1/m f2/m f3/m]

Suppose that force f = [f1 f2 f3] depends only on x and t, we

can write the ODE:

x’ = F(x, t)

Starting from an initial value x0 = x(t0), we can solve the ODE

with several integration methods. Our simulation engine

implements three explicit methods: Euler, Midpoint, and fourth-

order Runge-Kutta.

The simplest method (Euler) produces an approximation value as

follows:

x(t0 + h) = x0 + hx’(t0)

where h is the integration step.

This method is formally justified by Taylor’s series:

x(t0 + h) = x0 + hx’(t0) + (h2/2!)x’’(t0) + (h3/3!)x’’’(t0) +

…+ (hn/n!)(∂ n
x/∂ tn)+ …

where one can easily notice that the Euler method is based on

deleting the parts of the series that contain higher order

derivatives. Accuracy of approximation is determined by the

temporal extent of the integration step and the size of the values

of the higher order derivatives that have been ignored by the

method.

Midpoint methods uses instead the following equation:

x(t0 + h) = x0 + h(f(x0 + (h/2)f(x0))

Finally, these are the equations of fourth-order Runge-Kutta:

k1 = hf(x0, t0)

k2 = hf(x0 + k1/2, t0 + h/2)

k3 = hf(x0 + k2/2, t0 + h/2)

k4 = hf(x0 + k3, t0 + h)

x(t0 + h) = x0 + (1/6) k1 + (1/3) k2 + (1/3) k3 + (1/6) k4

For the mathematical justification of these methods, we refer the

reader to numerical analysis textbooks (e.g. [3][7]).

The use of implicit methods has not been considered to avoid

increasing the complexity of the simulator.

4.2 Simulating cloth parts and garments
The simulation method described in the previous section has been

implemented with a Java class. We now introduce the three main

VRML nodes (SimulationScript, Garment and ObjectCollider

PROTOs) that allow one to invoke the simulation method inside

the 3D world. The physics simulation obtainable with these nodes

considers gravity, viscosity, wind and collision detection between

a textile part and a user-defined object (it will be typically a

mannequin, but it can also be any other object, e.g., a chair or

table). The structure of the SimulationScript node is the

following:

1 DEF SimulationScript Script
2 {
3 mustEvaluate TRUE
4 eventIn SFTime DefineClothGeometry
5 eventIn SFTime ComputeNewFrame
6
7 field SFNode garment USE UserDefinedGarment
8 field SFNode collider USE UserDefinedObject
9
10 field SFFloat viscosity_const 0.2

11 field SFFloat x_wind_intensity 10.0
12 field SFFloat y_wind_intensity 10.0
13 field SFFloat z_wind_intensity -100.0
14 field SFFloat wind_turbulence 10.0
15 field SFFloat integration_step 0.0025
16 field SFInt32 ODESolverType 0
17 field SFInt32 iterations
18 eventOut MFVec3f coord
19 eventOut MFInt32 coordIndex
20 eventOut MFVec2f texturecoord
21 eventOut MFInt32 texturecoordIndex
22 eventOut MFVec3f collisioncoord
23 eventOut MFInt32 collisioncoordIndex
24
25 url "Simulator.class"
26 }

This node is responsible to communicate all the needed

parameters to the simulation engine, that is encapsulated in the

Java class “Simulator.class” (line 25). At line 3, the

mustEvaluate flag tells the player that it cannot ignore the script

execution. At line 4 and 5, two eventIn are respectively used to

initialize (DefineClothGeometry) the simulator and require the

production of new animation frames (ComputeNewFrame). At

line 7 and 8, one can specify a garment (garment field) and an

object that might collide with it (collider field). At line 10,

viscosity determines the resistance of the fluid (typically air) into

which cloth is immersed. Line 11 through 14 contain wind

parameters (direction and turbulence). At line 15, 16 and 17, one

can respectively specify the integration step, choose the

integration method (Euler, Midpoint, Runge-Kutta) and set the

number of iterations that the integration method has to perform

for each generated frame. Lines 18 through 23 contain eventOut
events: coord and coordIndex control the garment geometry,

texturecoord and texturecoordIndex control the texture

mapping on the garment, the last two events allow the simulator

to control the geometry of the possibly colliding object.

The Garment PROTO is defined as follow:

1 PROTO Garment
2 [
3 exposedField MFVec3f coordinate []
4 exposedField MFInt32 index []
5 exposedField SFVec3f size 1 1 1
6 exposedField SFRotation rotation 0 0 1 0
7 exposedField SFVec3f translation 0 0 0
8
9 exposedField SFInt32 weft_particles_num 50
10 exposedField SFInt32 warp_particles_num 50
11 exposedField SFFloat particle_mass 0.1
12 exposedField SFFloat weft_elastic_const 1800
13 exposedField SFFloat warp_elastic_const 1800
14 exposedfield SFFloat
 weft_bending_elastic_const 400
15 exposedfield SFFloat
 warp_bending_elastic_const 400
16 exposedfield SFFloat
 shear_elastic_const 400
17 exposedfield SFFloat
 elastic_damping_const 0.1
18 exposedfield SFFloat
 objectcloth_friction_const .5
19 exposedfield SFFloat
 objectcloth_damping_const .3
20
21 eventIn MFVec3f coordIN
22 eventIn MFInt32 indexIN
23 eventIn MFVec2f texturecoordIN
24 eventIn MFInt32 textureindexIN
25]
26 {

27 Shape
28 {
29 geometry DEF GarmentShape IndexedFaceSet
30 {
31 coord DEF GarmentCoord Coordinate 32
 { point IS coordinate }
33 coordIndex []
34 solid FALSE
35 creaseAngle 3.1
36 texCoord DEF TextureCoord
 TextureCoordinate { point [] }
37 texCoordIndex []
38 }
39 appearance Appearance {…}
40 }
41 DEF EventLinkScript Script {…}
42 }

GarmentShape (line 29) is an IndexedFaceSet that defines the

initial garment geometry (automatically generated with the tool

we describe in Section 5.2). Every vertex of the GarmentShape

corresponds to a particle. The change of the particle position

computed by the simulator class produces the change of the

GarmentShape geometry. Parameters at line 9 and 10 allow one to

choose the number of particles in the mesh, while line 11 defines

the particle mass. Line 12 through 17 contain the parameters for

the springs. They control respectively elastic extension in weft

and warp direction, elastic bending in weft and warp direction,

elastic shearing and the damping constant for all these spring

types. Lines 18 and 19 specify the object-cloth collision

parameters: the friction and the damping constants respectively

determine the sliding and bouncing behaviors of the particles over

the object. EventLinkScript (line 41) is needed to link the

eventIn events of the PROTO to the GarmentShape elements

(e.g., the event coordIN is linked to GarmentShape coordinates).

The UserDefinedObject (line 8 of SimulatorScript) is an

instance of the ObjectCollider PROTO:

PROTO ObjectCollider
[

exposedField MFVec3f coordinate []
exposedField MFInt32 index []
exposedField SFVec3f size 1 1 1
exposedField SFRotation rotation 0 0 1 0
exposedField SFVec3f translation 0 0 0

eventIn MFVec3f coordIN
eventIn MFInt32 indexIN

]

Its structure is very simple and allows one to define an

IndexedFaceSet using coordinate and index

exposedFields.

The following is the event sequence that controls a simulation

(Agarment is an instance of the Garment PROTO and Acollider is

an instance of the ObjectCollider PROTO):

1 ROUTE Touch.touchTime
2 TO SimulationScript.DefineClothGeometry
3 ROUTE Touch.touchTime
4 TO Timer.startTime
5 ROUTE Timer.cycleTime
6 TO SimulationScript.ComputeNewFrame
7 ROUTE SimulationScript.coord
8 TO Agarment.coordIN
9 ROUTE SimulationScript.coordIndex
10 TO Agarment.indexIN
11 ROUTE SimulationScript.texturecoord
12 TO Agarment.texturecoordIN

13 ROUTE SimulationScript.texturecoordIndex
14 TO Agarment.textureindexIN
15 ROUTE SimulationScript.collisioncoord
16 TO Acollider.coordIN
17 ROUTE SimulationScript.collisioncoordIndex
18 TO Acollider.indexIN

The TouchSensor called Touch (line 1) is used to start the

simulation: its eventOut is routed into SimulationScript to

initialize the simulation. SimulationScript accepts the event and

builds both the particle system and the coordinates of the

GarmentShape. The same TouchSensor starts a TimerSensor
called Timer (lines 3-4), that sends to SimulationScript (lines 5-6)

a cycleTime event every 25ms. As a response, SimulationScript

computes a new frame, returning the new coordinates and texture

mapping for GarmentShape (lines 7-14), and the coordinates for

the possible colliding object (lines 15-18).

The Java class responds to the ComputeNewFrame eventIn with

the following code:

1 if(event_name.equals("ComputeNewFrame"))
2 {
3 int it;
4
5 for(it=0; it<iterations; it++)
6 Integration();
7
8 // EventOut:
9 coord_obj.setValue(position);
10 }

that performs a number of numeric integration steps equal to those

specified by the iteration variable. Assuming that the user has

selected the Euler method, integration will be performed by

calling the following function:

1 private void EulerStep()
2 {
3 int i;
4 float sim = integrationStep/particleMass;
5
6 ComputeForces();
7 ComputeCollisions();
8
9 for(i=0; i<num_particles; i++)
10 {
11 velocity[i][0]+=sim*force[i][0];
12 velocity[i][1]+=sim*force[i][1];
13 velocity[i][2]+=sim*force[i][2];
14 position[i][0]+=
 integrationStep*velocity[i][0];
15 position[i][1]+=
 integrationStep*velocity[i][1];
16 position[i][2]+=
 integrationStep*velocity[i][2];
17 }
18 time+=step;
19 }

This method executes the four main tasks introduced in section

4.1: line 6 calls the force computation function; line 7 calls the

collision detection and response functions; line 9 through 18

perform state integration. More specifically, position, velocity and

force are two-dimensional float vectors, whose length is the

number of particles in the system. For example, the i-th particle is

located in 3D space at (position[i][0], position[i][1],

position[i][2]).

Figure 4 illustrates an example where a single cloth part is used to

simulate a rectangular textured flag subject to wind forces. The

cloth is fixed to a flagstaff by applying a constriction to the

position of upper left and upper right particles.

A more complex example is illustrated in Figure 3 and Figure 5

where a complete garment is simulated. This requires to manage

the garment seams: the effects of stitching is computed at

simulation time, by applying non-linear elastic forces to the

different sets of particles that have to be joined, assembling the

garment around the virtual body. Figure 3 shows the stitching

process of a top on a female body. Figure 5 illustrates the final

results of the simulation of the considered top and a skirt.

4.3 System performance
The current version of the system is able to provide real-time

simulation on common PCs when the mass-spring system is in the

1000-3000 particles range. For example, the cloth shown in

Figure 4 is based on 900 (30x30) particles to which gravity,

viscosity, constriction, elastic, and wind forces have been applied:

a simulation performed with the Euler method (integration step

4ms) returns acceptable animation frame rates even on low-end

PCs, e.g. we obtain 18 fps on a laptop equipped with AMD

Mobile Athlon 4 at 1.2 GHz, 256Mb Ram, graphic card S3

Twister 16Mb, using the Cortona 4 player. On the same low-end

hardware, the simulation shown in Figures 3 and 5 takes ten

minutes (including the stitching phase) before reaching a stable

state; the shirt is based on a 2500 particles grid; the skirt on 2500

additional particles, and the body is made of 5000 triangles.

In general, the most computationally expensive task is given by

the naive collision detection algorithm, which is the part of the

system that needs more improvements.

Figure 7 shows how the accuracy of the simulation can be flexibly

changed by setting the resolution of the grid. The upper images

(shaded at left, wireframed at right) use a low resolution mesh,

allowing for real-time animation even on low-end PCs. The lower

images use a higher resolution; aesthetic results improve but

computational costs are four times higher.

From the point of view of downloading times on the Internet, it

must be noted that the proposed approach allows one to obtain

files of minimum size that contain complex animations: this is due

to the fact that the animation does not need to be pre-compiled

and included in the file. For example, the animated flag illustrated

in Figure 4 requires to download only 26Kb (3Kb for the VRML

file, 19Kb for the Java class, 4Kb for textures). We made some

files available for download at [12].

5. AN INTEGRATED 3D GARMENT PROTYPING

ENVIRONMENT
A garment has its own 2D geometrical definition stored in CAD

files (usually in proprietary formats). This basic 2D data must be

complemented by additional information for 3D simulation

purposes: for example, traditional CAD systems do not typically

include information such as physical properties of the textile

materials, textures, and precise seam information among the

designed 2D shapes. Some of this information is recorded (after

the garment prototyping phase is completed) on paper forms

aimed at the different operators involved in the production phase.

A complete garment description is thus fragmented along the

production process and a significant part of the seams data is not

available in electronic format. In this way, the information shared

between the prototyping and the production phase is only the one

contained in the traditional CAD file.

Figure 3. Four stitching phases (This figure is reproduced in

color on page X).

Figure 4. A simulation screenshot: a flag in the wind [12] (This

figure is reproduced in color on page X).

Figure 5. Simple garment fits a virtual body (This figure is

reproduced in color on page X).

Figure 6. Two different cloth types (This figure is reproduced

in color on page X).

Figure 7. Low mesh resolution (upper images), and high mesh resolution (lower images) [12].

 Geometrical information in current CAD files can be directly

used by a possible design and simulation tool, but it is not

sufficient to build and simulate a virtual garment prototype. The

tool should thus take care of representing additional information

such as seams, grades, textile types (or properties), colors,

accessories. An ideal tool should allow to integrate all the

different tasks needed to proceed from concept design to

production. To pursue this goal, we have first defined an

interchange file format (section 5.1) that can be shared among all

tasks; then we developed a tool (section 5.2) able to support the

user in defining a complete garment description based on the

format, that can be immediately fed into the previously described

cloth simulator.

5.1 The XVC (eXtensible Virtual Clothing)

interchange format
The final purpose of our XVC format (eXtensible Virtual

Clothing) is to collect together and organize all the information

needed to represent a garment, including that required for 3D

simulation purposes. XVC has been defined in XML. An XVC

document is organized in three abstraction layers. The lowest

layer is composed by XML entities we call basicData and can be

of the following types:

• C2D: 2D coordinate;

• C2DSEQ: sequence of C2D entities;

• SCALE2D: 2D scale data;

• ROTATION2D: 2D rotation data;

• COLORRGBA: color data in RGBA format;

• SIZE: garment size data (such as S, M, L, XL);

• HEM: data about stitchable areas;

• PARAMETER: parameter value (e.g., physical parameters

such as weight, elasticity,...);

• ASSOCIATION: association between entities (e.g., it can be

used to associate a texture to a part of cloth);

• POSITION: geometric position data (e.g., it can be used to

indicate where a pocket is on a trouser).

These basicData entities are assembled into module structured

entities at the upper level; modules can be of the following types:

• PATTERN: geometric definition of garment parts;

• SEAM: definition of garment seams;

• GRADATION: complete garment grade data;

• MATERIAL: data about mechanical textile properties;

• TEXTURE: images to apply on patterns;

• ACCESSORY: information about buttons or other extras.

Finally, the highest layer is composed by XML entities called

containers, that are used to assemble modules or other containers

to define a full garment. For each type of module, there is a

container aimed at grouping together different instances of that

module: for example, several garment parts (each one represented

by a PATTERN module) can be grouped by a PATTERNS

container. GARMENT is the top container of the hierarchy,

representing the unique root of the XML document. Reasons of

space do not allow us to fully describe XVC; in the following, we

illustrate it with an example.

A GARMENT container includes an identification number (ID),

possibly the format version followed by a number of other

containers or modules identified by their IDs. The following is an

example of a possible GARMENT:

<?xml version="1.0" encoding="UTF-8" ?>

- <GARMENT ID="1S001" version="1.0">

+ <PATTERNS ID="1S001.PATTERNS0">

+ <GRADATIONS ID="1S001.GRADATIONS1">

+ <SEAMS ID="1S001.SEAMS2">

+ <TEXTURES ID="1S001.TEXTURES3">

</GARMENT>

Each of the 4 containers in the example includes a number of

corresponding modules. For example, if we expand the

PATTERNS container, we obtain:

<?xml version="1.0" encoding="UTF-8" ?>

- <GARMENT ID="1S001" version="1.0">

- <PATTERNS ID="1S001.PATTERNS0">

+ <PATTERN ID="P01" piecename="…">

+ <PATTERN ID="P02" piecename="…">

+ <PATTERN ID="P03" piecename="…">

</PATTERNS>

+ <GRADATIONS ID="1S001.GRADATIONS1">

+ <SEAMS ID="1S001.SEAMS2">

+ <TEXTURES ID="1S001.TEXTURES3">

</GARMENT>

where three modules of type PATTERN are identified by their

IDs. If we expand one of the patterns we obtain a number of 2D

coordinate sequences. The following listing shows an expansion

of the P01 pattern and of two of its enclosed coordinate

sequences:

<?xml version="1.0" encoding="UTF-8" ?>

- <GARMENT ID="1S001" version="1.0">

- <PATTERNS ID="1S001.PATTERNS0">

- <PATTERN ID="P01" piecename="…">

- <C2DSEQ ID="C01">

<C2D x="-31.226" y="0.0" />

</C2DSEQ>

- <C2DSEQ ID="C02">

<C2D x="-32.347" y="24.307" />

<C2D x="-33.742" y="48.593" />

</C2DSEQ>

+ <C2DSEQ ID="C03">

+ <C2DSEQ ID="C04">

+ <C2DSEQ ID="C05">

+ <C2DSEQ ID="C06">

+ <C2DSEQ ID="C07">

</PATTERN>

+ <PATTERN ID="P02" piecename="…">

+ <PATTERN ID="P03" piecename="…">

</PATTERNS>

+ <GRADATIONS ID="1S001.GRADATIONS1">

+ <SEAMS ID="1S001.SEAMS2">

+ <TEXTURES ID="1S001.TEXTURES3">

</GARMENT>

The concatenation of the 2D coordinates contained in a

PATTERN allows one to draw a cloth part. Figure 8 shows an

example concerning a part of trousers; the upper part of the figure

shows the full pattern, while the lower part shows more in detail

its geometric definition.

The separation of a pattern in subsequences (C2DSEQ) allows

one to identify hems for the garment. This is needed to keep

information about seams (in the SEAMS container). An example

of a SEAM module is the following:

- <SEAM ID="S01">

<HEM ID="H01" direction="normal" from="C01"

to="C04" type="normal" />

<HEM ID="H02" direction="normal" from="C15"

to="C18" type="normal" />

</SEAM>

the module includes a number of HEMs to be stitched together.

Each HEM has two attributes (from and to) that identify

sequences of points (C2DSEQ) contained in the PATTERN

modules. The other attributes of HEM (direction and type) are

needed to complete the specification of them seam, allowing to

assemble the garment.

Parsing and visualizing an XVC document is made easier by

resorting to XSL (eXtensible Stylesheet Language). A complete

description of the XVC format is provided in [10].

5.2 The VIGDES (VIrtual Garment DESigner) tool
VIGDES (VIrtual Garment DESsigner) is a prototype tool that

complements the activities usually performed with a 2D textile

CAD, aiming at adding the previously mentioned data needed for

3D simulations by relying on the previously described XVC

format, and then producing 3D garment previews by exploiting

the proposed cloth simulator. The prototype is compatible with

existing 2D textile CAD systems, because it is able to import DXF

files with the AAMA (American Apparel Manufacturers

Association) extension, that is the currently available interchange

format for 2D garment data. Finally, the system imports also

textures (in jpeg, gif, png, and tiff formats). As shown by the

architecture in Figure 9, other main parts of the prototype concern

its user interface, whose primary goal is to allow fast data

insertion for garment description. Figure 10 shows a screenshot of

the interface. It is composed by three main windows: the tree view

of the XVC document (on the left), the graphics window (on the

right) and a multi-tab window for data editing and context dialogs

(on the lower part of the screen). The tree window allows for

object selection and high-level operation (add, delete, copy and

paste of XML nodes). After selecting a node on the tree, the user

can edit the node properties through a specific edit window. The

graphics window allows for typical 2D CAD operations and

specific additional tasks such as stitching. In Figure 10, the user

has just completed the specification of seams among 2D cloth

shapes (imported from a traditional CAD) and is ready to get a 3D

preview of the resulting pair of trousers.

Figure 8. An example of “PATTERN” module, “C2DSEQ” and “C2D” basicData.

Figure 9. VIGDES architecture.

Figure 10. The VIGDES user interface.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented three main results of our research

projects: the Java/VRML cloth simulator, the XVC interchange

format, and the VIGDES design tool.

We are currently working at further improving the simulator in

two main directions. First, one has to consider that some garment

is a complex assembly of different parts (often made of different

textile materials) and its structure is sometimes multi-layered (e.g.,

a pocket stitched on a shirt). The current version of the simulator

is instead limited to single-layer, single-material garment. We are

thus working on a version of the simulator that independently

considers the different textile parts and also the collisions among

them. Second, further improvements in efficiency can be gained

by changing the current simple implementation of collision

detection, and experimenting with new explicit integration

methods that have been recently proposed in the field of

Numerical Analysis.

From the point of view of aiding the garment designer in easily

using our tool, we are working at extending the 3D preview

capabilities of VIGDES, by including standard sizing systems

used in the textile industry, and parametric mannequins for virtual

try-on purposes.

7. ACKNOWLEDGEMENTS
The research described in this paper is partially supported by the

Benetton Group in the context of the EUREKA Project E! 2324

(“Raprodyre: Rapid Prototyping and Dynamic Virtual

Representation of Clothing”).

We are grateful to Roberto Montanari, Mara Buzzi, Renato Lista,

and Ermenegildo Buso from the Benetton Group: they worked

closely with us to define the goals and analyze the requirements of

the developed prototype.

8. REFERENCES

[1] Baraff D. Curved Surfaces and Coherence for Non-

penetrating Rigid BodySimulation, in Computer Graphic

Proceedings, (SIGGRAPH, 1990), 19-28.

[2] Baraff D., Witkin A. Large Steps in Cloth Simulation, in

Computer Graphics Proceedings, (SIGGRAPH, 1998), 106-

117.

[3] Birkhoff G., Rota G. Ordinary Differential Equation. John

Wiley & Sons, New York, fourth edition, 1989.

[4] Breen D. E., House D. H., Cloth Modeling and Animation,

(2000), A K Peters.

[5] Breen D.E., House D.H., Getto P.H. A Physical-Based

Particle Model of Woven Cloth, in Visual Computer, (1992)

264-277.

[6] Carignan M., Yang Y., Magnenat-Thalmann, Thalmann D.

Dressing Animated Synthetic Actors with Complex

Deformable Clothes, in Computer Graphics Proceedings,

(ACM SIGGRAPH, 1992), 99-104.

[7] Coddington E. A., Levinson N. Theory pf Ordinary

Differential Equations. McGraw-Hill, New York, 1966.

[8] Eberhardt B., Weber A., Strasser W. A fast, flexible,

Particle-System for Cloth Draping, in Computer Graphics in

Textiles and Apparel (IEEE Computer Graphics And

Application), (September, 1996), 52-59.

[9] Eishen J.W., Deng S., Clapp T.G., Finite-Element Modeling

and Control of Flexible Fabric Parts, in Computer Graphics

in Textiles and Apparel, (IEEE Computer Graphics and

Applications, September 1996), 71-80.

[10] Extensible Virtual Clothing (XVC) Format Specifications,

version 1.0, Technical Report, Eureka Project E!2324

“Raprodyre”, 2002.

[11] Gerber Technology. http://www.gerbertechnology.com

[12] HCI Lab, Cloth Simulation Page, University of Udine,

http://hcilab.uniud.it/cloth3d.jsp

[13] Investronica Sistemas. http://www.invescol.com

[14] Kawabata S. The Standardization of Hand Evaluation. The

Textile Machinary Society of Japan, Osaka, 1975.

[15] Provot X., Collision and Self-Collision Handling in Cloth

Model to Dedicated to Design Garments, in Graphic

Interface proceedings, Canadian Information Processing

Society, Canadian Human-Computer Communications

Society, (May 1997), 177-189.

[16] Provot X., Deformation Constrains in a Mass-Spring Model

to Describe Rigide Cloth Behavior, in Graphic Interface

proceedings, (Quebec City, Canada, 1995), 147-154.

[17] Rosenbloom, A. (ed.) Special issue on Physically-based

Computer Animation. Communications of the ACM, 43(7),

2000.

[18] Terzopoulos D., Platt J., Barr A., Fleischer K. Elastic

deformable models, in Computer Graphics Proceedings,

Annual Conference Series, (New York, ACM SIGGRAPH,

July 1987), 205-214.

[19] Vassilev, T. I, Dressing Virtual People, in SCI'2000

conference, (Orlando, July 2000), 23-26.

[20] Volino P., Courchesne M., Magnenat-Thalmann N. Versatile

and Efficient Techniques for Simulating Cloth and other

Deformable Objects, in proceedings Siggraph '95, (1995),

137-144.

[21] Volino P., Magnenat-Thalmann N, Efficient Self-Collision

Detection on Smoothly Discretized Surface Animations

using Geometrical Shape Regularity, in Proceedings

Eurographics '94, Computer Graphics Forum, (1994).

[22] Volino P., Magnenat-Thalmann N. Accurate Collision

response on polygonal Meshes, in Computer Animation

Conference, (Philadelphia, May 2000).

[23] Volino P., Magnenat-Thalmann N. Comparing Efficiency of

Integration Methods for Cloth Animation, in Proceedings of

CGI'01, (Hong-Kong, July 2001).

[24] Volino P., Magnenat-Thalmann N., Developing Simulation

Techniques for an Interactive Clothing System in

Proceedings VSMM'97, (Geneva, Switzerland, 1997), 109-

118.

[25] Volino P., Magnenat-Thalmann N., Implementing fast Cloth

Simulation with Collision Response, in Computer Graphics

International, (June 2000).

[26] Volino P., Magnenat-Thalmann N., Jianhua S., Thalmann D.,

The Evolution of a 3D System for Simulating Deformable

Clothes on Virtual Actors, in IEEE Computer Graphics and

Applications, (September 1996), 42-50.

[27] Weil J. The synthesis of cloth objects, in Proceedings

Computer Graphic, Annual Conference Series, (ACM

SIGGRAPH, August 1986), 49-53.

