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ABSTRACT
Many Web3D sites do not offer sufficient assistance to
(especially novice) users in navigating the virtual world, find
objects/places of interests, and learn how to interact with
them. This paper aims at helping the Web3D content creator
to face this problem by: (i) proposing the adoption of guided
tours of virtual worlds as an effective user aid and (ii)
describing a novel tool that provides automatic code
generation for adding such guided tours to VRML worlds.
Finally, we will show how the tool has been used in the
development of an application concerning a 3D computer
science museum.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques –
Interaction techniques. I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism – Interaction techniques
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – Artificial, augmented, and virtual
realities.

General Terms

Design, Human Factors, Algorithms.

Keywords
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1. INTRODUCTION
A well-known factor limiting the diffusion and popularity of
Web3D sites on the Internet is their scarce usability
(especially from the point of view of novice users). While
developers of traditional Web sites are aware that usability i s
one of the key issues for the success of their sites and rely on
guidelines and tools that support them in this direction,
Web3D content creators have generally neither Web3D-
specific guidelines nor specific tools available to help them.

In our research, we are concentrating on finding ways to

increase the usability of Web3D sites. In this paper, we
consider a specific usability problem that affects many Web3D
worlds, i.e. insufficient user assistance during world
exploration, and propose an approach aimed at helping the
Web3D content creator to face the problem with little effort.

The considered solution is based on exploiting a humanoid
animated character (more specifically, an H-Anim character)
making it able to lead the user on a guided tour of the world.
This solution is at the same time a navigation aid (since i t
helps users in finding places of interest) and an information
aid (since the character is also able to provide information
about the encountered places and objects). Moreover, the
introduction of an animated character has the additional
advantage of making the virtual world more lively and
attractive for the user.

Unfortunately, developing guided tours led by H-Anim
characters is not an easy task for the Web3D content creator,
since it currently has to be done mostly by hand (e.g., coding a
suitable path for the virtual guide avoiding obstacles).
Moreover, the code written for one world can be very limitedly
reused for other ones.

The aim of this paper is to aid the Web3D content creator by
proposing an automatic approach to solve the considered
problem. More specifically, given a VRML world, an H-Anim
character, and a high-level description of the desired
destinations (basically, the ordered list of objects/places in
the world that must be in the tour, and possibly their textual
descriptions), the proposed tool is able to automatically
generate the necessary VRML code to make the H-Anim
character act as a virtual guide that: (i) leads the visitor
through the virtual world on a tour that includes all the
specified objects/places in the given order, and (ii) stops at
each object/place and possibly presents it.

Path planning is one of the main capabilities an animated
character must include to be able to autonomously travel any
environment. Path planning algorithms have been originally
developed by the artificial intelligence community for
autonomous robot applications [12], and later successfully
exploited also by the game industry [16][17] and virtual
environments research [2][3][7][8][11]. However, in the
Web3D context, there are neither general-purpose solutions
targeted to the Web3D content creator, nor approaches to the
problem that exploit the H-Anim standard.

The paper is structured as follows. First, in Section 2, we
advocate the exploitation of virtual tours with embodied
guides as an effective user aid in Web3D worlds, and compare
it with other existing user aids (e.g. maps, viewpoint tours). In
Section 3, we illustrate our approach to building guided tours
with H-Anim characters, and show how a Web3D content



creator can use it as a stand-alone tool for automatic code
generation. In Section 4, we show how the approach can be also
exploited within a dynamic Web3D site to generate guided
tours that are personalized to the needs of the current visitor.
In Section 5, we provide a practical example of how we
exploited our approach in a specific application, by describing
how we added personalized guided tours to a 3D Computer
Science museum based on the virtual reconstruction of a
computing center of the 70’s. Finally, in Section 6 we discuss
the current limitations of the proposed approach and outline
how we plan to overcome them.

2. MOTIVATIONS
Many Web3D worlds, whether representing existing places
(e.g., virtual cities) or imaginary ones, typically leave the user
alone and partially or totally unassisted in navigating the
environment, discover points of interest, and interact with
objects. Although in games this can be a desirable situation, i t
is definitely not in Web sites devoted to other purposes (such
as virtual tourism, training, museums, e-commerce,...). Leaving
the user unassisted can lead to a number of usability problems,
ranging from navigation issues (e.g., wayfinding) to
difficulties in figuring out which operations can be performed
on the objects in the world. In the following, we analyze these
issues in detail.

2.1 Navigation Issues
The lack of proper navigation support causes the user to suffer
from well-known navigation problems (e.g., wayfinding,
disorientation, ...). As a result, visitors of a virtual world can:
(i) become rapidly frustrated and leave the world; (ii) miss
interesting parts of the world (especially in large
environments), and (iii) complete the visit with the feeling of
not having adequately explored the world.

This is particularly true for novice users of a virtual world,
who should be helped as much as possible to navigate the
world by offering them proper navigation aids (see, e.g., the
survey on navigation and wayfinding issues in virtual
environments provided by [20]). To this purpose, a first
category of solutions can be derived from the design of real-
world environments. For example, in the design of buildings,
architects aim at reducing wayfinding problems for the people
traveling the building by increasing visual access (i.e. the
number of parts of the environment which can be seen by a
person from her position in space) or including navigational
cues (e.g., room numbers, names of buildings, landmarks).
Landmarks are distinctive environmental features (e.g., a
statue, a river, a town square, …) functioning as reference
points [23]. However, this kind of solutions can be limitedly
applied to Web3D sites that are virtual reconstructions of
existing places, where the architecture of the environment
cannot be modified.

A second category of solutions aims at providing the user with
electronic navigation aids to augment her capabilities to
explore and learn. A well known example in this category are
the various types of electronic maps of the environment that
help users orient themselves (see, e.g., [6][8]). However,
electronic maps adopt a third-person perspective, which can
require a considerable cognitive mapping effort to be correctly
interpreted (e.g., consider the typical real-world situation
where someone is trying to find her way in a city by using a
map and has to translate the exocentric view of the map into
her egocentric view). This claim is supported by psychological

studies, e.g. Thorndyke and Hayes-Roth [21] compared spatial
judgment abilities of subjects who learned an environment
from personal exploration or from a map, highlighting the
difficulty of changing perspective (e.g., subjects who acquired
knowledge from the exocentric map perspective were most
error prone in tasks that required to translate their knowledge
into a response within the environment).

The two above mentioned categories of solutions are
complementary and can be synergically exploited by the
Web3D content creator. In this paper, we focus specifically on
a solution belonging to the second category.

2.2 Getting Information about the World
Another difficulty that can be experienced by the visitor of a
virtual environment is to determine what she can do with
objects and how to get information about them. Instructions to
the user are typically provided by introductory pages, which
describe the contents of the world, and how to interact with
objects. Many users typically skip these introductory pages
and later fail to explore parts of the world because they are not
aware of all the possible actions (e.g., to notice that some
actions on an object are possibile, one could have to try
moving the pointer over the object to check if the pointer icon
changes).

Providing information about objects can be crucial, for
example, in virtual museums, virtual training and e-commerce
sites, where getting additional information is a fundamental
part of the user experience. Some sites face this problem by
providing the information during the visit in a separate HTML
frame. However, this solution has the disadvantage of
decreasing user immersion, and is not viable when the user
wants to display the Web3D world in full screen mode (this i s
a possibility offered by recent VRML players, but does not
allow one to simultaneously display other windows and HTML
frames).

2.3 Using Animated Characters as Guides
One of the solutions that can take into account all the previous
concerns is to offer tours of the Web3D world. Moreover, from
the Web3D content creator perspective, the possibility of
offering tours allows one to naturally suggest preferable ways
to visit the world. This can be important in many kinds of
virtual worlds, such as virtual exhibitions, museums, and
cities.

Simple forms of (unguided) tours are already offered by some
Web3D sites by providing a set of viewpoints through which
the user has to cycle to visit the world in a certain order.
However, while viewpoints can be useful for quickly
navigating the world, they are not easy to use for learning
navigational knowledge, such as paths, relating the different
parts of the world (if teleporting is used, they also break the
continuity of the experience, further contributing to user
disorientation). Viewpoint control functions can even go
unnoticed by novice users of VRML browsers.

The approach we adopt in this paper is to provide the user with
guided tours based on an H-Anim character that acts as a
virtual guide, i.e. it is able both to lead the user to the required
places and to provide information through a semi-transparent
On Screen Display (OSD) available inside the 3D world. In the
following, we discuss in detail how this approach addresses
the previously illustrated concerns, and the benefits of using
humanoid characters as virtual guides.



First, virtual guides are navigation aids, leading users around
and preventing them from becoming lost: the user has simply
to follow the guide to visit the world. As pointed out by
Rickel and Lewis Johnson [18], showing the user where
relevant objects are and how to get to them is likely to be more
effective than trying to tell users where objects are located.
Moreover, the expert user has still the possibility to ignore the
guide and follow her own tour, but it is very likely that novice
users will instead appreciate and use the aid. For example,
informal experiments with users in a virtual city showed that
the environment was explored to a greater level and by an
higher number of users as a result of tour guides explaining
how to get the most out of the system [9]. From a more general
point of view, while a virtual guide does not directly help the
user in overcoming some typical 3D navigation problems (e.g.,
bumping into obstacles), a properly chosen tour can lower the
probability that the user finds himself in positions where i t
can be difficult to find a way (e.g. corners).

Second, virtual guides can be also employed as a natural way
to provide users with additional information (e.g. usage of a
particular object) during the visit, instead of providing those
information into separate Web pages. For example, a virtual
museum guide could give an introduction at the beginning of
the visit and later present specific items on display, possibly
explaining how to interact with them. With respect to other
forms of user guidance, an animated character can draw user’s
attention with the most common and natural methods, such as
gaze and pointing gestures [18]. Moreover, the guide can also
use its body orientation as a cue to the suggested attentional
focus [18].

Third, introducing an animated character in the world can
contribute to alleviate an additional problem, i.e. most virtual
worlds where the user is left completely alone look like dead
places (like just after the builders have left the building), that
are less attractive to the user. Animated characters make
instead the virtual place more lively, attractive, and less
intimidating to the user. Results of empirical studies show
that animated characters may have a strong motivational
impact: users tend to experience presentations given by
animated characters as lively and engaging [14] [22].

Finally, from a human-computer interaction point of view, the
guide metaphor has the advantage of being consistent with the
real-world experience of users and need not to be learned. From
this point of view, we concentrated our attention on guides
that travel around the world by simply walking (i.e., they do
not fly, crawl, ...). Moreover, it would be very difficult for the
user to follow paths that require movements other than
walking, e.g., 6DOF flying in a 3D space (as VRML browsers
typically allow) is known to be very difficult for novice users.

3. DERIVING VIRTUAL TOURS FOR

WEB3D WORLDS WITH H-ANIM GUIDES
Achieving the previously illustrated goals requires to deal
with a number of different problems, ranging from the
derivation of suitable paths for the virtual guide, to choosing
how to present objects/places of interest to the user. Writing
ad-hoc code to solve these problems is not a viable solution,
because the Web3D content creator would have to start from
scratch with each virtual world and the process would be too
costly.

Existing tools for Web3D content creators are beginning to
offer some basic automation capabilities. For example, Internet

Scene Assembler [15] provides some support for the creation
of character paths: the Web3D content creator has to specify a
set of navigation checkpoints (i.e. points along the desired
path), and the tool derives an interpolation between them.
However, this kind of solution leaves to the content creator the
responsibility of: (i) guaranteeing that the animation will be
collision-free with respect to other objects in the world, i.e.,
each line connecting two consecutive checkpoints must not
intersect any obstacle; (ii) guaranteeing a smooth animation,
with no unnatural character movements (e.g. too sudden turns
or too rapid changes in speed), e.g., a sufficient number of
checkpoints must be provided; (iii) guaranteeing that the
animation will be compenetration-free, i.e., checkpoints must
be positioned far away enough from obstacles to guarantee
that no part of the humanoid (e.g. hands) will compenetrate
obstacles. As a result, creating a suitable path for a virtual
guide constitutes a time-consuming, trial-and-error activity
for the Web3D content creator.

There is thus the need for solutions that provide increased
levels of automation and are simpler and faster to use. In
particular, we aim at providing fully automatic code
generation in VRML, allowing the content creator to
concentrate only on high-level aspects (e.g., which
objects/places of the world need to be presented, what could be
the text for their presentation,...). More specifically, our tool,
called VRML Tour Creator, requires the following inputs:

q The VRML file of the world for which the guided tour
needs to be developed;

q The H-Anim model for the virtual guide and the
height and radius of the bounding cylinder of the H-
Anim model;

q The ordered list (called TourList) of k objects/places
to be presented. Each object/place is specified by a
triple;

(GuideLocation, PresentationText, GuideGesture)

where GuideLocation is the location and orientation
in the VRML world where the guide must stop (near
the corresponding object/place) and possibly start
the presentation, PresentationText is the text that
describes the object/place, and GuideGesture is the
identifier of the gesture the guide has to perform to
point the object/place. GuideGesture is chosen from
a list of available gestures, whose code for H-Anim
characters is stored in a database (called gesture DB).
The order of objects/places in the list will be
followed by the guide during the tour;

q The desired maximum speed of walking for the
virtual guide (in VRML units/second).

The VRML Tour Creator then outputs a new version of the
VRML world that includes the code generated for the guided
tour. As a result, when the user enters the world, she will see
the H-Anim character in the location specified by the first item
of the TourList, and will be able to read the PresentationText
in the semi-transparent OSD (see Figure 1). While the text i s
displayed, if no GuideGesture has been instead specified, the
guide only mimics a talking person. If a GuideGesture has
been specified, the guide periodically switches its attention
between the user and the object/place: when the guide
performs the specified pointing gesture, its orientation is
turned towards the pointed object; in other moments, the



Figure 1. A guide presenting an object. The required
presentation text is displayed on a semi-transparent OSD.

Figure 2. A Tour path derived by our tool in the virtual
museum application.

Figure 3. A screenshot of the virtual museum application.



Figure 4. Architecture of the VRML Tour Creator.

guide is oriented towards the position of the user
(dynamically detected through a proximity sensor), and moves
its arms and hands to mimic a talking person. This choice has
been taken to achieve two goals: on one hand, giving the user
the feeling that the guide is addressing her; on the other hand,
ensuring that the attention towards the required object/place is
clearly directed.

After the presentation of an object, the guide starts walking
towards the following item in the TourList, following the
shortest path towards it that prevents collisions and
compenetrations with any object in the world. Following the
shortest path reduces travel time, while avoiding collisions
and compenetrations makes the guide behavior closer to the
real-world.

The general architecture of the VRML Tour Creator (which has
been implemented in Java) is depicted in Figure 4. It is mainly
composed by three modules: a Tour Path module that derives
a list of appropriate navigation checkpoints for the required
tour, a Tour Presentation module that generates the code for
presenting objects/places, and a Tour Assembler module that
combines the output of the other two modules to produce the
VRML code for the guided tour. In the following, we consider
separately each module, describing the main technical issues
we had to deal with and illustrating the adopted solutions.

3.1 The Tour Path module
The function of the Tour Path module is to derive an
appropriate sequence of navigation checkpoints that will be
used by VRML position and rotation interpolators to move the

guide from each object/place to the subsequent one in the
desired tour. Two kinds of navigation checkpoints are used: (i)
translation checkpoints, that contain a VRML translation
value (i.e., a guide position in the world) and a time value (i.e.,
seconds elapsed with respect to the starting time of the current
path), and (ii) rotation checkpoints that contain a VRML
rotation value (i.e., a guide rotation along its vertical axis) and
a time value (i.e., seconds elapsed with respect to the starting
time of the current path).

The approach we follow to deal with the problem of deriving a
suitable set of navigation checkpoints for the guided tour i s
based on using a path planning algorithm. Path planning i s
the problem of finding an optimal path from one place to
another (the goal), avoiding obstacles [11]. The problem has
been studied in artificial intelligence and robotics (in
particular, for mobile robot applications) and the proposed
solutions have been later employed by the videogame
industry (e.g.[16][17]) and in the context of virtual
environments (e.g. [2][3][11]). Many approaches to path
planning have been proposed to deal with different needs and
conditions: some of the possible choices are whether or not
the environment is known in advance (and how accurately the
environment can be possibly sensed), whether the terrain i s
plain or not, whether obstacles can move or not, how the cost
of traveling a region is calculated (e.g. in strategy games, roads
are easier to travel than mountains), and other application-
specific constraints (e.g. planning a path for a military unit
that must hide itself from enemies). There are two main classes
of path planning approaches: one focuses on complete



methods (i.e., those that are guaranteed to find a solution or
determine that none exists, as the method we employed in this
work), while the other focuses on probabilistic methods,
which trade completeness for a substantial reduction in the
complexity of the problem. For example, Amato and Yan [1]
propose a randomized method for efficient path planning in
complex configurations (e.g., the space is very cluttered, and
there are 6DOF for movement). Probabilistic solutions looks
very promising when dealing with strong requirements such as
real-time constraints, moving obstacles, planning with more
than 3DOF (e.g. flying), or large environments.

However, considering the Web3D context, there are neither
approaches to the problem that exploit the H-Anim standard,
nor general-purpose solutions targeted at the Web3D content
creator.

The solutions developed in other contexts are not suited to the
Web3D context for various reasons. In the approaches to path-
planning developed in robotics, for example, the robot can
typically sense only a part of the environment. Moreover,
robotic applications present also sensor accuracy problems
(e.g., one may need to drastically change a planned path
because sensors previously gave an inaccurate representation
of the environment). On the contrary, in Web3D worlds one has
an accurate representation of the full world available (which
could in principle be derived from the VRML file of the world
itself).

Approaches to path planning developed for 3D videogames
typically suffer from the fact that character paths must be
generated while the game is running and limited CPU time can
be assigned to the task. As a result, they tend to offer scarce
automation abilities and require a considerable work for each
level of a game. For example, the path planning algorithm
developed for computer-controlled characters in the Unreal
Tournament game requires the developer to carefully position
a number of navigation checkpoints that must be both
sufficient but not too large, such that they cover each
intersection or turn, are in line of sight with each other, and
sufficiently far from walls and obstacles [16].

The approaches to path planning developed for virtual
environments often focus on obtaining an extremely realistic
behavior of the walking humanoid. For example, Granieri et al.
[10] propose a multiprocessing system for the real-time
execution of behaviors and motion of an interactive human-
like agent based on an underlying model of continuous
behavior coupled with a discrete scheduling mechanism. In
[7], the output of a path planning algorithm is used to plan
each walking step of a humanoid (i.e. planning occurs at the
footprint level), and then a motion control system using
inverse kinematics is used to control the motion of the rest of
the body after each leg movement. However, these approaches
are not meant for the VRML and H-Anim standards, they do not
propose stand-alone tools for content developers, and they are
sometimes based on high-end hardware such as multi-
processors.

In our approach, we combine ideas taken from different
approaches, integrating them inside a stand-alone tool that
aims at providing a good compromise between simplicity (the
final tool is targeted at the average Web3D content creator, and
should also be run on a common PC), generality (support of
the H-Anim standard and applicability to many VRML worlds),
and realism.

3.1.1 Path planning for the guided tour
We adopt a modified version of a well-known grid-based path
planning approach [12]. In the following, we give a concise
overview of this approach and we discuss in detail how we
applied it to the Web3D context.

We classify areas of the virtual world in two categories: areas
that the guide can freely navigate, and areas that it cannot
(because they contain obstacles). From this perspective, the
optimal path is simply the one with minimum length among
those that avoid obstacles.

We first represent the 3D world as a 2D occupancy grid [12],
i.e. a two dimensional matrix. Each cell of the grid corresponds
to a (small) area of world floor (i.e. the plane on which the
guide walks). The grid indicates which cells can be traveled by
the guide, and which cannot. The grid can be obtained by
ideally cutting the virtual world with a plane that is parallel to
the floor and positioned just above the guide’s virtual head
(obstacles above the head do not need to be considered), and
then projecting the objects that are below the cutting plane on
the floor. Those cells that contain (a part of) a projected
obstacle are marked as NOT-FREE, while the others are marked
as FREE. Moreover, to avoid compenetration between
extremities of the guide (e.g., hands) and obstacles (this can
happen when the guide goes very close to the border of a cell
that contains an obstacle), we mark as NOT-FREE also those
cells that do not contain obstacles but are within a circle of R
from each original NOT-FREE cell, where R is the radius of the
bounding cylinder of the humanoid. In this way, it i s
guaranteed that the guide will always be in positions that
avoid compenetration. As an example, consider the trivial
virtual world shown in Figure 5 and its occupancy grid shown
in Figure 6: NOT-FREE cells that contain obstacles are
highlighted in black, NOT-FREE cells that do not contain
obstacles in grey, and FREE cells in white.

Now suppose that we want to find a path for the guide from its
actual position (at the top left corner) to the goal position that
has been highlighted with a sphere. Given the occupancy grid
and the goal position, a cost grid for the current path planning
problem is determined. The cost grid is a matrix of the same
size as the occupancy grid (there is a one-to-one
correspondence between the cells in the occupancy grid and
those in the cost grid) where each cell contains the minimum
cost needed for traveling from the cell itself to the goal
position. Each value of the cost grid is calculated as follows:
first, the cost of NOT-FREE cells in the occupancy grid is set to
the largest representable number; then, the cost of FREE cells
is calculated starting from the goal cell (whose cost is zero),
and then recursively considering adjacent cells that do not
contain obstacles (i.e., using a floodfill algorithm [13]). The
cost of adjacent cells is estimated as the cost of the current cell

plus 1 (for laterally adjacent cells) or plus 2 (for diagonally
adjacent cells). As an example, Figure 7 shows the cost grid for
the path planning problem depicted in Figure 5.

Using the cost grid, we then calculate the navigation
checkpoints along the shortest path in the following way (note
that a cell can contain multiple checkpoints, because the guide
can make several steps in that cell).

First, given the actual position of the guide, we determine the

direction of movement (i.e., an angle between 0 and 2p) along

the shortest path as the cost gradient [12] at the current guide
position: if the cost grid is visualized as a 3D surface where



Figure 5. A simple VRML world with a virtual guide starting at
the top left corner, and its goal position (the sphere).

Figure 6. Occupancy grid for the path planning problem
depicted in Figure 5.

heights corresponds to costs (i.e. the goal is at the lowest
level), then the gradient determines the downhill direction
along the shortest path. We separately calculate the gradients
along the X and Z axis, and then we convert them into a

direction between 0 and 2p.

Second, we derive both a new translation checkpoint with a
translation value equal to the position where the guide will be
after taking a step in the calculated direction, and a new
rotation checkpoint with rotation value equal to the calculated
direction.

These two steps are then repeated (considering the newly
derived checkpoints as the actual location and orientation of

Figure 7. Cost grid for the path planning problem depicted in
Figure 5.

Figure 8. Calculated path for the path planning problem
depicted in Figure 5.

the guide) until the humanoid is sufficiently near to the goal
position. Since when the guide is near an obstacle (i.e. it is in a
cell which is adjacent to NOT-FREE cells) the gradient method
can cause unrealistic (jerky) movements, in such cases the
algorithm uses the direction towards the lowest cost neighbor
instead of calculating the gradient.

By connecting the set of translation checkpoints derived for
the path planning problem in Figure 5, we obtain the path
shown in Figure 8.

Time values for all the derived checkpoints are then calculated
as follows. First, time values for translation checkpoints are
set according to the guide desired speed, avoiding sudden
accelerations. As a consequence, the guide reaches its
maximum speed only a few instants after starting its walk, and
slows down just before reaching her goal position.



Since the path derived by our algorithm is a stepwise linear
curve, we want to avoid situations where the guide is not
oriented towards the walking direction (i.e., the guide “slides”
laterally while walking). In principle, this could be achieved
by simply having the guide stop at each turn, rotate towards
the new direction, and then resume walking. However, while
this strategy would work for a wheeled robot, it is unrealistic
for a humanoid. Therefore, we adopt the following solution:
we delay the time of each rotation checkpoint with respect to
the corresponding translation checkpoint by a small amount
(i.e., the time value of each rotation checkpoint is the average
between the time values of the corresponding translation
checkpoint and the subsequent translation checkpoint). As a
consequence, given a translation checkpoint that corresponds
to a turn in the path, the guide will start changing its
orientation (at the previous rotation checkpoint) just before
the turning point, and will then reach the required degree of
rotation just after the turning point.

This solution is not optimal, because there are still situations
in which the guide is not precisely oriented towards the
walking direction. However, the result looks anyway quite
realistic, and has the advantage of keeping the walking
animation smooth (i.e., no stops are made for turning).

For a complete guided tour, given the occupancy grid and a
sequence of k GuideLocations, k-1 path planning problems,
that differ in the initial and final position of the guide, need to
be solved on that grid. More specifically, each problem will
use GuideLocat ioni as the initial position and
GuideLocationi+1 as the goal position. When all k-1 path
planning problems have been solved, the complete sequence
of navigation checkpoints for moving the guide through the
desired tour is available.

3.1.2 Building the occupancy grid
The accuracy of the occupancy grid is critical for the success of
path planning. For example, if a cell that is considered free
from obstacles contains instead a part of some object, there i s
no guarantee that the derived guide animation will be
completely free from collisions and compenetrations.

The resolution of the grid is also important: in principle, i t
would be best to use high resolutions, since this would result
in the most accurate representation of obstacles (geometrically
complex obstacles can be accurately represented using a
proper resolution of the grid) and smoothest guide animation.

In general, since the algorithm that computes the path is
computationally expensive (although polynomial and
manageable for most practical uses, i.e. when the world and the
grid resolution are not extremely large), one should generally
avoid too high resolutions. In particular, given a n*n grid, the
procedure that calculates the cost grid has to perform n2 cost
evaluations. In order to limit this problem, one can (besides
trivially limiting the size of the grid) adopt well-known
approaches (such as the A* algorithm [19]) that try to calculate
only the cost for relevant cells (i.e., cells that are likely to
contain the optimal path). Anyway, this complexity issue is
not critical in our case, because our tool performs path-
planning off-line. The issue would instead become more
important if one needs to run the path-planning algorithm on
the client-side, e.g. to have the possibility of dynamically
changing the path of an animated character during the visit.

At present, we build the occupancy grid by hand, either by
starting from a paper sketch of the world map (that the content
creator often draws before building a world) or by starting

from a computer image that has been obtained by putting a
virtual camera in a proper position above the virtual world,
and then taking a snapshot. However, we are currently
experimenting with an automatic approach that, once the floor
has been given a special color (i.e. not used for other objects in
the world), uses low-level image processing algorithms on the
2D image given by the virtual camera to distinguish regions
where the guide can travel from regions containing obstacles.
A similar approach to occupancy grid derivation has been
successfully employed by [11].

3.2 The Tour Presentation Module
The Tour Presentation module derives the VRML code for the
presentation of each object/place in the tour. Each
PresentationText is displayed in a semi-transparent OSD that
appears at presentation time (see Figure 1). However, other
methods could be employed for presentation. For example, we
have easily developed a talking version of the virtual guide
using a Microsoft Text to Speech ActiveX object: every time
the guide has to present an object/place, the proper text for the
presentation is loaded in a hidden HTML frame to be read by
the ActiveX object. However, the OSD solution has the
advantage of being compatible with various platforms and
does not require the user to download and install a speech
engine.

The code for presentations on the OSD is derived as follows.
Each PresentationText i s first divided by the Tour
Presentation module into a suitable number of substrings,
each one containing a portion of text that will fit into the
width of the OSD area; then, the module creates a number of
VRML Text nodes, such that each node contains a number of
substrings to fill the height of the OSD. The OSD is a VRML
PROTO, whose instantiation with the Text nodes as field
values gives the VRML code for the presentations. The PROTO
of the OSD includes a script that will select and display the
correct PresentationText for the object/place that is being
presented.

3.3 The Tour Assembler Module
The Tour Assembler module uses the outputs derived by the
two previously described modules together with other inputs
from the Web3D content creator (i.e., the VRML file of the
world, the H-Anim model and the required GuideGestures for
the object/places in the tour) to assemble the VRML code for
the guided tour and include it in the world.

Figure 9 shows an high-level schema of the VRML code for the
virtual tour. A Tour Controller Java script sends the proper
start/stop commands to animate the guide (walking,
performing gestures, ...) and activates the OSD when needed.

For example, when the guide needs to walk towards a new
object/place, a the Tour Controller activates the position and
rotation interpolators that, following the sequence of
navigation checkpoints, set the location and orientation of the
guide over time such that it moves towards the destination on
the calculated path. At the same time, the Tour Controller runs
also the code for making the H-Anim humanoid change
properly its posture over time (in this case, move its legs).
Only the relevant code for making the guide perform the
required gestures is retrieved from the gesture DB and inserted
in the final VRML code instance.

The same method is used to make the OSD appear on the
screen, and display the required text.



Figure 9. Schema of the VRML code for a generic guided tour.

Figure 10. The integration of the VRML World Creator into the AWE3D architecture.

4. DERIVING PERSONALIZED GUIDED

TOURS
Automating the process of deriving a guided tour for a VRML
world opens up possibilities that go beyond helping the
Web3D content creator in building pre-defined tours. Indeed,

our tool can be included in server-side programs that
dynamically generate different tours for different visitors,
taking into account what is known about the user’s
preferences, interests, and needs. As a result, we can
individually personalize the guided tour of the Web3D world,
i.e. build a user-adaptive system [4].



Personalized tours can be more effective than pre-defined ones
from the point of view of usability and/or user satisfaction.
Simple adaptation examples concern the speed of the virtual
guide that could be automatically set according to the
estimated/measured user skill at 3D navigation, and the
humanoid model could be automatically chosen according to
the user age (a young user will probably prefer a more funny,
cartoon-like character, while a more rational user will probably
prefer a more serious character). More complex examples could
involve the choice of which objects/places should be included
in the tour and the order of their visit. For example, in a virtual
city the system could derive specific tours that match user’s
preferences towards architecture or history or restaurants or a
weighted combination of different interests.

Moreover, if the server records data about the user’s visits,
there is the possibility of deriving tours that take into account
past interactions of each user with the 3D world. For example,
if we record whether certain objects/places have not been
presented to the user in previous visits (because the user had
left the world before seeing them), we could derive a tour that
focuses on them.

The approach we proposed can be easily integrated into any
architecture that is able to dynamically generate VRML
content, such as [5][24]. The architecture we have recently
proposed, called AWE3D [5], explicitly supports the recording
of usage data inside the VRML world and is thus suited for our
personalization purposes. For this reason, we show how our
approach is integrated into the AWE3D architecture.

Briefly, the AWE3D architecture can be divided in three main
parts [5]:

q a client-side part, whose purpose is to monitor the
user’s behavior inside the virtual world by means of
properly positioned VRML sensors and to send the
usage data to the server;

q a server-side user model, stored in a database and
updated using the data acquired from the client. Its
purpose is to maintain an up-to-date description of
the user’s preferences, interests, and needs;

q a server-side module (VRML World Creator) that
exploits the user model to adapt a set of predefined
VRML PROTOs by properly instantiating them with
field values that best match the user model. The set of
instantiated PROTOs, possibly together with other
VRML content, constitutes the personalized VRML
world, which is sent to the user.

The integration of our tool into AWE3D to automatically
derive personalized guided tours is highlighted in bold in
Figure 10.

First, we add the parameters describing a tour (i.e. the TourList
with its components, guide speed, H-Anim model, ...) to the
user model. For each user, the value of those parameters can be
then assigned differently to create a personalized tour. Once
the VRML World Creator derives a personalized version of the
VRML world, we give it as input to the VRML Tour Creator,
together with the tour personalization choices. The final
VRML world with the personalized tour is then made available
to the user.

5. EXAMPLE: A VIRTUAL  MUSEUM
Recently, we developed a 3D Computer Science museum based
on a VRML world representing a data processing center of the
70’s, reproducing hardware from the Univac/Sperry 90/30 line.

The virtual museum (partially shown in Figure 3) is organized
into two rooms: a terminal room and a data processing room.
Each room is filled with terminals, printers, disk drives,
computers. The user has the possibility of interacting with the
items on display, e.g. opening printers to look inside, extract
disks from drives, etc. To further increase the realism of the
experience, we included also the needed generic furniture
(desks, chairs, …) and proper sounds associated to printers,
keyboards, air conditioners, and so on.

We then produced textual explanations to give visitors
information about the purpose and functioning of the devices
shown in the museum, and the different kinds of professional
skills (e.g. data entry, analyst).

When we built the first version of the world, visitors were
supposed to explore it by themselves, but informal
experiments with users showed that some form of guidance
was needed during the visit. For example, some users wanted
to know if there was a logical order to be followed, or, after
visiting the museum, asked if they had seen everything. Some
of them (who were not familiar with VRML worlds) had
difficulties in traveling around, interacting with some objects
(e.g. open a disk drive and extract the disk) or even did not
notice some possibilities of interaction.

The tool proposed in this paper has been used to automatically
virtual tours presenting the various kinds of computing
equipment, and describing how to interact with them, without
the need of changing the original world. For example, Figure 2
shows the path followed by the guide in a short tour with three
objects.

By using the AWE3D architecture to dynamically generate
VRML content, we had the ability to automatically personalize
the derived tours according to what is known about the user.
The needed user data are first acquired using an HTML form
(filled by the user on its first visit) which asks about age,
education, computer science knowledge, and how much time
she intends to spend for the visit, and then continuously
updated by recording which devices have been presented to
the user in the different visits, whether the user looked inside
them, and so on. This, for example, gives users the ability to
stop a tour, and then, in the next visit, take a tour that includes
only objects that have not been previously seen.

First informal tests of the museum with guided tours have
shown favorable responses from users. More formal evaluation
with users is planned, but has not been carried out yet.

6. CONCLUSIONS AND FUTURE WORK
This paper presented an approach to automatically derive and
personalize guided tours for VRML worlds, and briefly showed
one of its applications (a Web3D virtual museum). The
described approach is characterized by two main limitations.

First, it assumes that the areas where the guide can navigate are
plain. This can be a problem for those virtual worlds that
contain stairs or hills. Consequently, if the world is a building
with multiple floors, the proposed tool is able to derive a path
for each floor, but it is not able to automatically connect two
plans for different floors with suitable guide animations (e.g.
climbing the stairs).



Second, the path planning procedure does not take into
account possible moving objects or other animated characters.
As a result, it is not guaranteed that the guide animation will
be collision-free with respect to these obstacles. At present, to
solve the problem without extending the tool, one has to
consider as an obstacle each cell of the occupancy grid where
other moving objects could be.

Future goals for this research are the following. First, we
intend to extend the approach to more than one animated
character. This would allow both to develop tours with
multiple characters, and at the same time to solve one of the
above mentioned limitations, by taking into account other
moving objects when deriving collision-free paths.

Second, we plan to extend the possible functions and
behaviors of the character. This ranges from the possibility of
having users give high-level commands to characters (e.g. “tell
me more about this object”, “I’m not interested in this object”)
to extending the characters abilities in interacting with the
world, e.g. the possibility of traveling into non-plain surfaces.
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