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Abstract 
Maps of physical environments and geographical areas are 
pervasively exploited in many human activities. Electronic maps 
of virtual worlds have been studied and proven to be useful as 
navigation aids to help users in finding their way through the 3D 
world. The contribution of this paper is twofold. In the first part, 
we propose an automatic method for the derivation of electronic 
maps from Web3D worlds which is based on standard 
X3D/VRML nodes, and can thus be run by any X3D/VRML 
browser. In the second part, we discuss how we are using the 
proposed method for the study and support of users' navigation in 
virtual worlds. In particular, we show: (i) how the derived maps 
simplify the implementation of various navigation aids, and (ii) 
how we are using the derived maps to visualize usage data from 
users' visits to 3D Web sites.    
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1. Introduction 
Maps of physical environments and geographical areas are 
pervasively exploited in many human activities. Besides their 
familiar use for navigation, maps are also used for many other 
purposes, including planning and information presentation in 
fields as diverse as geology, military operations, and urban 
planning.  
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A map is a (visual) representation showing spatial relationships 
among different types of information, enabling their display for 
(human) interpretation and analysis. Electronic maps of virtual 
worlds (i.e., the electronic analogues of the paper maps commonly 
used by people) have been studied and used (mainly) as 
navigation aids to help users in finding their way through virtual 
environments (see e.g. [Aretz, 1991][Darken and Peterson, 
2001][Darken and Sibert, 1996][Ruddle et al. 1999]).  

In this paper, we consider the problem of automatically deriving 
an electronic map for a X3D/VRML world, and propose a method 
that is: (i) effective for many Web3D worlds, and (ii) simple to 
implement, being based on standard X3D/VRML nodes (other 
proposed approaches to the problem, as discussed in Section 2.1, 
require instead the access to low-level graphic primitives). More 
specifically, the approach we propose is able, starting from a 
X3D/VRML world, to derive a two dimensional matrix such that: 
(i) each cell of the matrix corresponds to an area of the virtual 
world and, (ii) the value of the cell indicates whether the 
corresponding area contains a geometry or not. Moreover, it is 
also possible to derive personalized maps for specific avatars (or 
humanoid characters) representing as free cells those areas that the 
character can travel by walking. 

To show the practical usefulness of the method, in the second part 
of the paper we describe how we are using it for the study and 
support of users' navigation. In particular, we will: (i) outline an 
algorithm to visually present the electronic map to the user during 
world navigation, and review some important choices for effective 
visualization of maps for navigation purposes; (ii) show how our 
approach can simplify, in the Web3D context, the implementation 
of many navigation aids proposed in the literature; (iii) describe 
how we are exploiting the derived maps in a software tool that 
visualizes various kind of information about the behavior of 
visitors of Web3D sites (e.g., what are the most traveled areas of 
the world). This can be useful, for example, in the usability 
evaluation of a Web3D site.  

The paper is structured as follow: Section 2 describes in detail the 
proposed approach to derive electronic maps from X3D/VRML 
worlds, discussing also limitations and related work; Section 3 
illustrates how we are exploiting the proposed approach; finally, 
Section 4 concludes the paper and illustrates future work.   

2. Automatic derivation of electronic maps  
In this Section, we first briefly review existing methods for 
automatically deriving electronic maps of virtual worlds, and then 
propose a novel approach to automatically derive an electronic 
map of a X3D/VRML world. 
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2.1 Related work 
Existing approaches to the automatic derivation of electronic 
maps of virtual worlds are typically based on rasterization 
algorithms [Bandi, 1998][Lengyel et al. 1990] that project onto a 
2D surface the objects (e.g., walls, buildings) of the virtual world. 
For example, in the technique proposed by [Kuffner, 1998], an 
orthographic virtual camera is positioned above the scene, 
pointing down along the negative normal direction of the "floor" 
of the world, with the clipping planes of the camera set to the 
vertical extents of the volume of the scene one wants to reproduce 
in the map. The specification of this volume is needed, for 
example, because objects above the head of the avatar and below 
its feet should not be considered an obstacle to navigation. All 
geometry inside the specified volume is then projected and 
rendered into the back buffer or an offscreen bitmap (either using 
software rendering or using the graphics hardware for increasing 
speed) in such a way that pixels corresponding to areas with 
objects are rendered in a different color than pixels corresponding 
to free areas. 
However, this kind of techniques cannot be easily applied in the 
Web3D context, since Web3D plug-ins and authoring tools do not 
typically allow the required level of control on the rendering 
pipeline. 

2.2 Our approach to electronic map derivation: main 
features and limitations 
As anticipated in the introduction, the electronic map our 
approach derives is a two dimensional matrix such that: (i) each 
cell of the matrix corresponds to an area of the virtual world and, 
(ii) the value of the cell indicates whether the corresponding area 
contains a geometry or not. This is the same kind of representation 
derived by previously proposed approaches. Unlike those 
approaches, our method is implemented using only a combination 
of X3D/VRML nodes, and can thus be simply run by a standard 
X3D/VRML browser. 
To give the flexibility of obtaining electronic maps at different 
sizes and levels of accuracy, we allow the possibility to specify 
the level of detail of the derived map (i.e., how many cells in the 
map will correspond to one square meter area of the world). As 
we will describe in the next section, it is also possible to derive a 
personalized map that highlights navigable areas for a specific 
avatar. Since the capability of traveling a certain area (e.g., 
passing through a door) depends on the size of the avatar, then, in 
general, different avatars can lead to different personalized maps 
of the same world. For example, consider the very simple world in 
Figure 1a. The personalized map for avatar A, shown in Figure 1c, 
correctly indicates the possibility for the avatar of passing through 
the door.  On the other hand, the electronic map for avatar B, 
shown in Figure 1b, does not indicate any passage, since the size 
of B does not allow it to walk through that door. The capability of 
generating personalized maps allows one to present the user with 
a map that highlights as free only those areas that the user is able 
to travel by walking. 
 

 
Figure 1. (a) A simple world and two avatars of different sizes; (b) 
personalized map for avatar B; (c) personalized map for avatar A. 

 
A limitation of our approach is that accurate maps can only be 
derived for worlds where the floor is flat. In our approach, any 
kind of geometry that is above the floor and below the head of the 
avatar will be represented in the derived map as an obstacle to 
navigation: as a consequence, all geometries that could be 
overcome by the avatar will be (incorrectly) represented as 
obstacles to navigation.  However, this limitation is common to 
the other approaches to the same problem mentioned in Section 
2.1. It has also to be noted that this limitation does not hold for 
multi-floor worlds (e.g., a building with many floors), provided 
that each floor is flat: in these cases, it is possible to derive a 
separate map for each floor, and then properly combine the 
different maps together. 

2.3 Deriving the electronic map 
The basic idea of our approach is to determine whether a cell of 
the map should indicate the presences of a geometry that prevents 
navigation, by checking if the corresponding area in the world can 
be traveled by an avatar created for the purpose. This is done by 
automatically moving a ViewPoint through the world (i.e., 
having the ViewPoint point scan the world) and detecting each 
collision of the viewpoint itself with any geometry. Whenever a 
collision is detected, the cell of the map that corresponds to the 
current position of the viewpoint is marked as containing a 
geometry. We now describe in detail how the proposed approach 
is implemented. 



 
Figure 2. X3D/ VRML Nodes and routing of events in our approach. 

 
The set of required X3D/VRML nodes, together with the needed 
events, is shown in Figure 2. A TimeSensor node starts and stops 
the map derivation process, and controls the speed of scan. The 
derivation of the map is carried out by two VRML scripts, called 
scanEnvironment and buildMap. The first script computes and 
updates the position of the viewpoint to scan the entire world (or 
the part of it whose map we want to derive). The second script 
receives detected collision events and updates the cell of the map 
that corresponds to the current position of the viewpoint. Collision 
events are generated by a Collision node, whose children 
include a NavigationInfo node (defining the size of the avatar 
used for scanning), a ViewPoint node (specifying the current 
position of the avatar), and a Transform node, whose children is 
the X3D/VRML world whose map we want to derive. 
We now describe in more detail the scanEnvironment and 
buildMap scripts. 

2.3.1 Scanning the world 
To define the part of the world that has to be represented in the 
map, one needs first to define the scan volume, i.e., a box whose 
size and position will identify the part of the world that will be 
represented in the map. More particularly, the scan volume (see 
Figure 3 for example) is defined by: 

• its size (specified by the xLen, yLen and zLen variables), in 
VRML length units; 

• the position, specified by the xPos, yPos and zPos variables, 
of the top-left corner of its bottom side (with respect to the 
world coordinate system); yPos will typically correspond to 
the y coordinate of the world floor; 

 

 
Figure 3. A graphical representation of a scan volume superimposed on a VRML world representing a building. 



Second, one needs to define the accuracy  of scanning, which we 
define as the length (in VRML units) of the side of each cell. The 
value of accuracy will directly influence the accuracy of the 
derived map. In general, a smaller value allows one to obtain a 
more detailed representation of the world, but the obtained map 
will be larger in size and thus will require more time for on-line 
computations (e.g., on-line path planning). 
For example, in Figure 3, we have set xLen, yLen, zLen, xPos, 
yPos and zPos to obtain the electronic map of a subpart of the 
world, and then we have set accuracy to 0.25 so that an area of 1 
square meter is represented by 4 map cells. 
All the parameters that define the scan volume and the accuracy 
parameter are fields of the ScanEnvironment script (whose VRML 
code is shown in Figure 4). The script computes a list of 
coordinates, corresponding to the sequence of viewpoint positions 
needed to scan the specified scan volume with the desired 
accuracy, using the algorithm outlined in the following. 
At initialization time, the script sets the fields of the 
NavigationInfo node that will be bound to the ViewPoint 
node during the scan. More specifically, the function 
setAvatarSize (called in row 16 of Figure 4): 

• sets the height of the NavigationInfo node to the value of 
yLen (i.e., the height of the scan volume); 

• sets the width of the NavigationInfo node (i.e., the radius 
of the bounding cylinder of the avatar) to half the accuracy 
value (i.e., half length of the side of a map cell). In this way, 
the bounding cylinder of the avatar we create for scanning 
purposes is exactly contained into each cell of the map (when 
positioned in the centre of it). This is done to ensure that, 
even in cases when an obstacle is only partially included into 
a cell, a collision is guaranteed to be detected. 

Moreover, the position field of the script (which will specify 
the position of the ViewPoint during the scan) is initialized, in 
rows 18-20, to the centre of the top left cell of the map, while its y 
coordinate is set to yPos + yLen (i.e., the position of the head of 
the avatar used for the scan). 
Then, at constant intervals of time (controlled by the 
TimeSensor), the cycleTime function of the script computes 
and updates (rows 25-32) the next value of the position field so 
that the ViewPoint is moved to the centre of subsequent cell that 
needs to be considered in the scan volume. Each time the function 
is called, the Viewpoint is moved to the cell at the right of the 
current cell (rows 25-27) or to the first cell of the next row, if the 
end of the current row has been reached (rows 30-32). 

2.3.2 Building the map 
The purpose of the buildMap script is to create a data structure 
that stores the map, i.e. a 2D array (called map) of binary values 
(1 for not navigable cells, and 0 for navigable ones). The code of 
the buildMap script is shown in Figure 5. 
At initialization time, the script initializes the size of the map 
required for the scan (rows 13-16 in Figure 5).  
The script receives, through its position input event, the current 
position of the ViewPoint (sent by the scanEnvironment script) 
at constant time intervals, and transforms it into a pair of indexes 
(rows 22-23 in Figure 5), that identify the cell of the map where 
the ViewPoint is currently located. Whenever a collision 
between the avatar and an object geometry is detected, the 

Collision node sends an event to the buildMap script; as a 
consequence, the  script marks the current cell of the map as not 
navigable by setting its value to 1 (row 19 in Figure 5). When all 
cells of the map have been considered (i.e., a loop event is 
received by the buildMap script), the construction of the map 
ends. 
The derived map can either be printed into the browser console 
(and then copied and saved for later use), or directly exploited 
inside the world, as we will discuss in Section 3.1. 

2.3.3 Personalizing  the derived map 
The buildMap script is also able to personalize the derived map on 
the basis of the size of a specific user’s avatar. When the 
personalized field of the script is TRUE,  the map is post-
processed as follows: all the cells that do not contain geometries 
but are within a circle of radius r from each not navigable cell 
(where r is the radius of the bounding cylinder of the user's avatar, 
whose size is set in the userAvatarSize field of the buildMap 
script) are marked as not navigable cells. 
 

1 DEF scanEnvironment Script{  
2  eventIn SFTime cycleTime 
3  field SFInt32 xLen 0 
4  field SFInt32 yLen 0 
5  field SFInt32 zLen 0 
6  field SFInt32 xPos 0 
7  field SFInt32 yPos 0 
8  field SFInt32 zPos 0 
9  field SFInt32 accuracy 1 
11 eventOut MFFloat avatarSize 
12 eventOut SFBool loop 
13 eventOut SFVec3f position 
14 url  "vrmlscript: 
15   function initialize(){ 
16    setAvatarSize(); 
17    
18    position[0] = xPos+(accuracy)/2; 
19    position[1] = yPos+yLen; 
20    position[2] = zPos+(accuracy)/2; 
21   } 
22   function cycleTime(){ 
23    if (position[2]<(zPos+zLen))  
24      if (position[0]<(xPos+xLen)){ 
25     position[0] = position[0]+(accuracy); 
26     position[1] = yPos+yLen; 
27     position[2] = position[2]; 
28     } 
29     else{ 
30     position[0] = xPos+(accuracy)/2; 
31     position[1] = yPos+yLen; 
32     position[2] = position[2]+(accuracy); 
33     } 
34    else loop = false; 
35    }" 
36   } 

Figure 4. The VRML scanEnvironment script. 
 

This way, only areas of the world that allow the user's avatar to 
travel are shown in the map as navigable, while too narrow 



passages are shown as not navigable areas. This can be useful for 
two purposes: first, it simplifies the activity of algorithms that 
reason with the map (e.g., path planning for a virtual character); 
second, it produces maps that are simpler to interpret by users.  As 
an example, Figure 6 shows a VRML world, its map derived with 
accuracy=0.25 (i.e. 1 VRML unit correspond to the length of 4 
cells in the map), and a personalized map for an avatar with radius 
r=0.25.  

2.4 Experimental results 
We experimentally evaluated the approach on several VRML 
worlds, using the Cortona 4.1 VRML player, on a 2.4 Ghz 
Pentium 4 PC equipped with a 128 Mb GeForce4 Ti4600 graphics 
board.  
 

1 DEF buildMap Script{  
2  eventIn SFTime collideTime 
3  eventIn SFVec3f position 
4  eventIn SFBool loop 
5  field SFInt32 xLen 0 
6  field SFInt32 zLen 0 
7  field SFInt32 xPos 0 
8  field SFInt32 zPos 0 
9  field SFInt32 accuracy 1 
10 field SFBool personalized FALSE 
11 field MFFloat userAvatarSize [0,0,0] 
12 field MFInt32 map [] 
13 url  "vrmlscript: 
14  function initialize(){ 
15    n = 1/accuracy 
16   map[][]=new array[xLen*n][zLen*n]; 
17  } 
18  function collideTime(){ 
19   map[i][j] = 1; 
20  } 
21  function position(p){ 
22    i=(p[0]-xPos)/(accuracy); 
23    j=(p[2]-zPos)/(accuracy); 
24  } 
25  function loop(){ 

26   if (personalized)  
27    /*process the map as described  in Section 2.3.3*/  }" 
28  } 

Figure 5. The VRML buildMap script. 
 

The time required to derive the map varied from a few seconds for 
maps with tens of cells, to some minutes for maps with thousands 
of cells. For example, the map displayed in the centre in Figure 6 
contained about 3000 cells and took five minutes to compute. The 
time required for the calculation of a map depends on the number 
of cells of the map and on the value given to the cycleInterval 
field of the TimeSensor that controls the map derivation process 
(roughly it corresponds to number of cells multiplied by 
cycleInterval). One would like to set the smallest possible 
cycleInterval to minimize the time required to derive the map; 
unfortunately, we noticed that with values smaller than 0.1, one 
obtains a map that is not accurate (i.e., some cells that do not 
contain object geometries are marked as not navigable anyway). 
This is probably due to the fact that, with very small values of 
cycleInterval,  some collision events are lost. 

3. Applications of the proposed method 
In this section, we discuss how we are using the proposed 
approach both for the study and the support of users’navigation in 
Web3D worlds. 

3.1 Implementation of navigation aids 
One of the most relevant usability issues for a Web3D site is the 
navigational support provided by its user interface. In current 
Web3D sites, people often become disoriented and tend to get 
lost. Inadequate support to user navigation is also likely to result 
in users leaving the world before reaching their targets of interest, 
or to leave users with the feeling of not having adequately 
explored the visited world. 
A possible solution is to provide the user with electronic 
navigation aids to augment her capabilities to explore and learn 
(see e.g., [Darken and Peterson, 2001][Li and Ting, 2000][Ruddle 
et al. 1999]). In the following, we show how the proposed map 
derivation method helps in implementing different kinds of 
navigation aids. 

 

 
Figure 6. A VRML world representing a building (left), the map derived by our method (centre), and the personalized map for an avatar 

with r=0.25 (right). Additional not navigable cells in the personalized map have been highlighted in grey. 



 
Figure 7. Displaying the map of the world to the user. 

 

3.1.1 Displaying the map of the world to the user 
A well-known navigation aid that we implemented by exploiting 
the output of the proposed method is the electronic map of the 
world displayed to the user, e.g. as in Figure 7. 
The graphical representation of the map can be automatically built 
by considering each set of not navigable adjacent cells of the map, 
and building an IndexedFaceSet node for that set with: 

• Coordinate node containing points the coordinates of cell 
corners in the perimeter of the set of cells; 

• coordIndex field listing the cell corners in the order one 
obtains by sequentially following the perimeter of the set of 
cells.      

The set of obtained IndexedFaceSet nodes is then placed on a 
(possibly semi-transparent) panel, scaled as desired and displayed 
to the user (see, e.g. Figure 7). 
The advantage of electronic maps is that they help users in rapidly 
forming survey navigational knowledge about the virtual world, 
i.e., establishing relationships among locations, which allows 
them, for example, to evaluate alternate routes. On the other hand, 
a common problem with electronic maps is that users need to 
translate the exocentric view of the map into their egocentric 
view: this requires a considerable mental effort, and can lead to 
incorrect interpretations if the map is not properly displayed. For 
example, the orientation of the map can greatly influence the 
performance of users. The orientation of a north-up map is fixed, 
while in a forward-up map the orientation dynamically changes in 
such a way that the upward direction of the map always shows 
what is in front of the viewer (this can be easily achieved by using 
a ProximitySensor that tracks the user's orientation and rotates 
the map accordingly). Studies by Aretz and Wickens [1992] 
concluded that forward-up maps are better for navigation 
purposes, while north-up maps are more indicated for exocentric 
tasks (e.g., urban planning). However, users that have experience 
with videogames (where north-up maps are more common) seem 
to prefer (and obtain better results) with north-up maps [Darken 
and Peterson, 2001]. A third possibility is to use a north-up map 
with visual momentum (e.g., a triangle showing the actual 

direction of the user on the map), an approach that has shown to 
combine the advantages of north-up and forward-up maps [Aretz, 
1991] (again, this can be obtained by using a ProximitySensor 
that tracks the user's orientation and rotates the triangle 
accordingly). 
The size of the map becomes an issue with large worlds (e.g., 
virtual cities), since it may not be possible to show the entire map 
on the area of the screen devoted to this purpose. One possible 
solution is to maintain a global map  by downscaling. This 
approach can effectively support search and path finding; 
however, downscaling the map can hide details that are crucial for 
navigation (e.g., narrow passages could not be perceived). A 
second solution is to adopt a local map, showing only part of the 
environment (typically, an area around the user's current position) 
with a good level of detail. The disadvantage of this solution is 
that the user might have to integrate the spatial knowledge 
acquired from different locations to carry out a navigation task. 
Ruddle, Payne and Jones [1999] have investigated the efficiency 
of local and global maps. According to their study, the 
combination of a global and a local map in a large-scale 
environment yields the  most effective results in a minimum-path 
search; when only one map can be displayed, however, it seems 
that a local map is more suited to first-time users, while a global 
map is more effective when users develop some knowledge of the 
environment.    

3.1.2 Indicating the path to be followed 
Navigation aids that explicitly indicate the path the user should 
follow can be used whenever a given destination for the user is 
specified, either because the user herself has specified it (e.g., by 
selecting it from a list of destinations) or because it is set by the 
designer of the world or because it is proposed or predicted by the 
system (e.g., on the basis of mouse movements of the user, as in 
[Li and Ting, 2000]). The purpose of the navigation aid is then to 
help the user in following a path to the destination. This can be 
achieved in various ways: 

• using constrained navigation techniques, where the user's 
control of avatar's movement is limited to avoid erroneous 
trajectories and collisions with object. For example, Igarashi 



et al. [1998] have presented a simple interaction technique for 
walk-throughs in which the user draws the intended path 
directly on the scene, and the avatar automatically moves 
along the path.  

• using signs, such as arrows, breadcrumbs, audio directional 
hints, etc. to suggest the walking direction along the path at 
each time.  

• using virtual guides, i.e., animated characters that travel 
towards the destination and help the user by showing her the 
way. For example, we have recently proposed the 
exploitation of H-Anim guides in Web3D worlds [Chittaro et 
al. 2003].  

Each of these approaches requires calculation of (or manual 
specification of) the path to be followed. A natural solution is to 
employ a path planning algorithm [Latombe, 1991], i.e., an 
algorithm that is able to derive an optimal (e.g., shortest) 
collision-free path from a starting position to a goal position. 
Among the various approaches to path planning that have been 
proposed in the fields of robotics and virtual environments, grid-
based path-planning algorithms [Latombe, 1991] are able to  
compute the path starting from a so-called occupancy grid, i.e. a 
map of the environment such as the one derived by the approach 
we propose.  
As a result, by using the electronic map in combination with a 
grid-based path planning algorithm, one can implement the above 
mentioned navigation aids and easily guarantee that the path the 
user needs to follow will be optimal and free from collisions. 
Moreover, since typically the computation of the optimal path 
must be carried out very quickly, the possibility of deriving 
simpler maps (e.g. with a suitable number of cells) allows one to 
constrain the time needed for path planning.  

3.2 Building tools to study users' navigation in Web3D 
sites 
Designing Web3D sites that are easy to navigate is not, in general, 
an easy task. This is mainly due to the lack of both proven design 
guidelines and proper tools that could help the designer in 

identifying and correcting possible navigation problems. On the 
other hand, in the context of traditional 2D Web sites, there are 
both extensive guidelines and commercial tools devoted to this 
purpose.  
As a result, the main way to discover usability/design problems in 
Web3D sites is to observe how users interact with the site itself.  
In particular, one interesting aspect of study is to what extent 
users are able to navigate the virtual world and access and see 
locations and objects of interest. For example, certain places in the 
world may be unreachable or go unnoticed (especially with novice 
users) because of narrow passages, hardly detectable paths, and so 
on. Observing users can also be useful to simply determine which 
parts of the world are most visited (for example, this could be 
important in a 3D e-commerce site).   
A current limitation in the usability evaluation of Web3D sites is 
the lack of software tools to support this activity, and thus the 
Web3D developer is forced to implement her own tools, or simply 
record usage data with paper and pencil.  
The maps derived by the proposed method are an important 
building block to develop such topic. For example, we are using 
them as a basis to visualize recorded usage data of virtual worlds. 
Usage data is obtained by sampling information from various 
X3D/VRML sensors in the world, and recording it into a database 
(for example, recording of users’ movements can be carried out 
using a ProximitySensor that constantly monitors users’ 
position and orientation), as described in [Chittaro and Ranon, 
2002].  
In the following, we describe four of the different types of 
visualizations of usage data on electronic maps we developed, 
discussing also how they can help the Web3D developer in 
classifying and evaluating how users navigate in a Web3D site. 

3.2.1 Visualizing usage data on the map 
The first visualization we discuss simply highlights the 
trajectories followed by one or more users during a visit. This is 
accomplished by plotting on the map each sampled user's position, 
and connecting the obtained dots with lines, as in Figure 8a.

 

 
(a) (b) (c) 

Figure 8. Using the map from the world in Figure 6 to visualize users’ navigational behaviour: (a) visualizing a user's trajectory; (b) 
visualizing several users' trajectories; (c) visualizing areas where the user stayed for more/less time and more/less seen geometries. 

 



By marking each user’s trajectory with a different color, one can 
compare the paths followed by different users. However, plotting 
all detailed users’ paths on the map can be visually confusing, as 
demonstrated by Figure 8b. 
To better support an evaluator in studying the behaviour of a 
population of users in a Web3D site, one can develop more 
complex visualizations based on color-coded areas. For example, 
in Figure 8c (see color version), colors on the map indicate how 
much time users stayed on each navigable area: red represents the 
areas visited by users (the brighter the shade of red, the more time 
users stayed on the area; blue represents areas not traveled by 
users). 
With similar conventions, one can also color map areas according 
to how many times users crossed them; in this case, the more 
users walk on an area, the brighter the shade of red used to paint 
it.  

Coloring map areas according to how many times users crossed 
them is a time-independent visualization (i.e., it takes into account 
only information on paths followed by users), and thus is not 
influenced by the traveling speed of users. The other proposed 
visualization is instead time-dependent (i.e., take into account the 
temporal dimension of recorded data), or, in other words, depend 
on the speed at which users travel the world.  

By combining different usage data, one is also able to visualize 
more/less seen geometries in the world. Since knowing both 
position and orientation of a user in time allows one to estimate 

how much time the different areas of the world have fallen inside 
her field of view, it is possible to visualize this information in the 
map using a suitable color coding. For example, in Figure 8c 
black represents unseen geometries; green represents the 
geometries seen by users (the brighter the shade of green, the 
more time the geometry has been seen). 

3.2.2 Exploiting map-based visualizations: some examples 
We now describe two scenarios that can benefit from the proposed 
visualizations. 

The first scenario considers a situation where the Web3D 
developer is interested in detecting navigation problems in a 
Web3D world organized in more than one room. In this case, data 
about the time spent by users into each room can be confusing, 
because it can depend on the users' interest towards the room 
contents. The time-independent visualization, instead, allows one 
to easily identify the less visited parts of the world without being 
heavily affected by users' interests. Consider, for example, the 
visualization in Figure 9 (see color version), which highlights 
more/less traveled areas: one can easily notice that the top left 
room is the less visited one, although its entrance is close to the 
initial position of users. This is probably due to the fact that the 
entrance of that room cannot be seen from the initial position of 
the user. The visualization also highlights other aspects of users' 
behavior, e.g. the fact that the majority of users started the visit by 
passing through the closest available door. 

 

 
Figure 9. Identifying the less visited room using a time-independent visualization with color-coded areas.

 



 
Figure 10. A representation of a “fish” visiting style using a time-dependent visualization with color-coded areas. 

 

The second scenario considers a situation where the Web3D 
developer is interested in identifying visiting styles and users' 
interests in a Web3D site. It is interesting to note that, in the real 
world (e.g., in museums), such kind of evaluation have led to 
classifications of  typical visiting styles, such as [Veron and 
Levasseur, 1983]. This specific classification allows one to 
identify four main categories of visitors: ants, fishes, butterflies 
and grasshoppers, with each category exhibiting a typical 

navigational behavior (for example, fish visitors tend to stay in 
the centre of a room, and equally devote their attention to all the 
objects in the room). By using a time-dependent visualization 
with color-coded areas, a similar classification can be exploited 
in Web3D sites. For example, Figure 10 (see color version) 
allows one to usually detect a typical fish visiting style by 
visualizing areas where the user stayed for more/less time and 
more/less seen geometries.  

  

4. Conclusions 
This paper proposed a method to automatically derive the map of 
a X3D/VRML world. The method simplifies the development of 
navigation aids and of tools that visualize usage data from past 
users' visits to Web3D sites. The proposed method could be also 
employed to support on-demand generation of site maps of 
Web3D worlds by content providers or even by browser vendors, 
for example as a navigation aid for users.  
With respect to future goals of this project, we intend to extend its 
applicability to X3D/VRML worlds that include obstacles that can 
be overcome by the avatar, such as slopes and stairs. Performing 
multiple scans of the world at different heights (and then combine 
all the derived maps into a single map) may be not a satisfactory 
solution in the general case, since it could require a high number 
of scans. In particular, it would be interesting to encode elevation 
information in the map (as done in some real-world maps), 
allowing one to always determine if the avatar can move from its 
current cell to a given neighboring cell. This way, one can 
determine, for example, that the avatar can easily climb a stair, 
while it cannot climb a steep mountain in the virtual world.      
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