
Automatic Derivation of Electronic Maps
from X3D/VRML Worlds

Lucio Ieronutti(1)

HCI Lab
Dept. of Math and Computer Science,

University of Udine
via delle Scienze, 206

33100 Udine, Italy

Roberto Ranon(2)
HCI Lab

Dept. of Math and Computer Science,
University of Udine

via delle Scienze, 206
33100 Udine, Italy

Luca Chittaro(3)
HCI Lab

Dept. of Math and Computer Science,
University of Udine

via delle Scienze, 206
33100 Udine, Italy

Abstract
Maps of physical environments and geographical areas are
pervasively exploited in many human activities. Electronic maps
of virtual worlds have been studied and proven to be useful as
navigation aids to help users in finding their way through the 3D
world. The contribution of this paper is twofold. In the first part,
we propose an automatic method for the derivation of electronic
maps from Web3D worlds which is based on standard
X3D/VRML nodes, and can thus be run by any X3D/VRML
browser. In the second part, we discuss how we are using the
proposed method for the study and support of users' navigation in
virtual worlds. In particular, we show: (i) how the derived maps
simplify the implementation of various navigation aids, and (ii)
how we are using the derived maps to visualize usage data from
users' visits to 3D Web sites.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques -- Interaction techniques. I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism -- Virtual reality.
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems -- Artificial, augmented, and virtual realities.

Keywords: Navigation Aids, Electronic Maps.

1. Introduction
Maps of physical environments and geographical areas are
pervasively exploited in many human activities. Besides their
familiar use for navigation, maps are also used for many other
purposes, including planning and information presentation in
fields as diverse as geology, military operations, and urban
planning.

(1)e-mail: ieronutt@dimi.uniud.it
(2)e-mail: ranon@dimi.uniud.it
(3)e-mail: chittaro@dimi.uniud.it

A map is a (visual) representation showing spatial relationships
among different types of information, enabling their display for
(human) interpretation and analysis. Electronic maps of virtual
worlds (i.e., the electronic analogues of the paper maps commonly
used by people) have been studied and used (mainly) as
navigation aids to help users in finding their way through virtual
environments (see e.g. [Aretz, 1991][Darken and Peterson,
2001][Darken and Sibert, 1996][Ruddle et al. 1999]).

In this paper, we consider the problem of automatically deriving
an electronic map for a X3D/VRML world, and propose a method
that is: (i) effective for many Web3D worlds, and (ii) simple to
implement, being based on standard X3D/VRML nodes (other
proposed approaches to the problem, as discussed in Section 2.1,
require instead the access to low-level graphic primitives). More
specifically, the approach we propose is able, starting from a
X3D/VRML world, to derive a two dimensional matrix such that:
(i) each cell of the matrix corresponds to an area of the virtual
world and, (ii) the value of the cell indicates whether the
corresponding area contains a geometry or not. Moreover, it is
also possible to derive personalized maps for specific avatars (or
humanoid characters) representing as free cells those areas that the
character can travel by walking.

To show the practical usefulness of the method, in the second part
of the paper we describe how we are using it for the study and
support of users' navigation. In particular, we will: (i) outline an
algorithm to visually present the electronic map to the user during
world navigation, and review some important choices for effective
visualization of maps for navigation purposes; (ii) show how our
approach can simplify, in the Web3D context, the implementation
of many navigation aids proposed in the literature; (iii) describe
how we are exploiting the derived maps in a software tool that
visualizes various kind of information about the behavior of
visitors of Web3D sites (e.g., what are the most traveled areas of
the world). This can be useful, for example, in the usability
evaluation of a Web3D site.

The paper is structured as follow: Section 2 describes in detail the
proposed approach to derive electronic maps from X3D/VRML
worlds, discussing also limitations and related work; Section 3
illustrates how we are exploiting the proposed approach; finally,
Section 4 concludes the paper and illustrates future work.

2. Automatic derivation of electronic maps
In this Section, we first briefly review existing methods for
automatically deriving electronic maps of virtual worlds, and then
propose a novel approach to automatically derive an electronic
map of a X3D/VRML world.

mailto:ieronutt@dimi.uniud.it
mailto:ranon@dimi.uniud.it
mailto:chittaro@dimi.uniud.it

2.1 Related work
Existing approaches to the automatic derivation of electronic
maps of virtual worlds are typically based on rasterization
algorithms [Bandi, 1998][Lengyel et al. 1990] that project onto a
2D surface the objects (e.g., walls, buildings) of the virtual world.
For example, in the technique proposed by [Kuffner, 1998], an
orthographic virtual camera is positioned above the scene,
pointing down along the negative normal direction of the "floor"
of the world, with the clipping planes of the camera set to the
vertical extents of the volume of the scene one wants to reproduce
in the map. The specification of this volume is needed, for
example, because objects above the head of the avatar and below
its feet should not be considered an obstacle to navigation. All
geometry inside the specified volume is then projected and
rendered into the back buffer or an offscreen bitmap (either using
software rendering or using the graphics hardware for increasing
speed) in such a way that pixels corresponding to areas with
objects are rendered in a different color than pixels corresponding
to free areas.
However, this kind of techniques cannot be easily applied in the
Web3D context, since Web3D plug-ins and authoring tools do not
typically allow the required level of control on the rendering
pipeline.

2.2 Our approach to electronic map derivation: main
features and limitations
As anticipated in the introduction, the electronic map our
approach derives is a two dimensional matrix such that: (i) each
cell of the matrix corresponds to an area of the virtual world and,
(ii) the value of the cell indicates whether the corresponding area
contains a geometry or not. This is the same kind of representation
derived by previously proposed approaches. Unlike those
approaches, our method is implemented using only a combination
of X3D/VRML nodes, and can thus be simply run by a standard
X3D/VRML browser.
To give the flexibility of obtaining electronic maps at different
sizes and levels of accuracy, we allow the possibility to specify
the level of detail of the derived map (i.e., how many cells in the
map will correspond to one square meter area of the world). As
we will describe in the next section, it is also possible to derive a
personalized map that highlights navigable areas for a specific
avatar. Since the capability of traveling a certain area (e.g.,
passing through a door) depends on the size of the avatar, then, in
general, different avatars can lead to different personalized maps
of the same world. For example, consider the very simple world in
Figure 1a. The personalized map for avatar A, shown in Figure 1c,
correctly indicates the possibility for the avatar of passing through
the door. On the other hand, the electronic map for avatar B,
shown in Figure 1b, does not indicate any passage, since the size
of B does not allow it to walk through that door. The capability of
generating personalized maps allows one to present the user with
a map that highlights as free only those areas that the user is able
to travel by walking.

Figure 1. (a) A simple world and two avatars of different sizes; (b)
personalized map for avatar B; (c) personalized map for avatar A.

A limitation of our approach is that accurate maps can only be
derived for worlds where the floor is flat. In our approach, any
kind of geometry that is above the floor and below the head of the
avatar will be represented in the derived map as an obstacle to
navigation: as a consequence, all geometries that could be
overcome by the avatar will be (incorrectly) represented as
obstacles to navigation. However, this limitation is common to
the other approaches to the same problem mentioned in Section
2.1. It has also to be noted that this limitation does not hold for
multi-floor worlds (e.g., a building with many floors), provided
that each floor is flat: in these cases, it is possible to derive a
separate map for each floor, and then properly combine the
different maps together.

2.3 Deriving the electronic map
The basic idea of our approach is to determine whether a cell of
the map should indicate the presences of a geometry that prevents
navigation, by checking if the corresponding area in the world can
be traveled by an avatar created for the purpose. This is done by
automatically moving a ViewPoint through the world (i.e.,
having the ViewPoint point scan the world) and detecting each
collision of the viewpoint itself with any geometry. Whenever a
collision is detected, the cell of the map that corresponds to the
current position of the viewpoint is marked as containing a
geometry. We now describe in detail how the proposed approach
is implemented.

Figure 2. X3D/ VRML Nodes and routing of events in our approach.

The set of required X3D/VRML nodes, together with the needed
events, is shown in Figure 2. A TimeSensor node starts and stops
the map derivation process, and controls the speed of scan. The
derivation of the map is carried out by two VRML scripts, called
scanEnvironment and buildMap. The first script computes and
updates the position of the viewpoint to scan the entire world (or
the part of it whose map we want to derive). The second script
receives detected collision events and updates the cell of the map
that corresponds to the current position of the viewpoint. Collision
events are generated by a Collision node, whose children
include a NavigationInfo node (defining the size of the avatar
used for scanning), a ViewPoint node (specifying the current
position of the avatar), and a Transform node, whose children is
the X3D/VRML world whose map we want to derive.
We now describe in more detail the scanEnvironment and
buildMap scripts.

2.3.1 Scanning the world
To define the part of the world that has to be represented in the
map, one needs first to define the scan volume, i.e., a box whose
size and position will identify the part of the world that will be
represented in the map. More particularly, the scan volume (see
Figure 3 for example) is defined by:

• its size (specified by the xLen, yLen and zLen variables), in
VRML length units;

• the position, specified by the xPos, yPos and zPos variables,
of the top-left corner of its bottom side (with respect to the
world coordinate system); yPos will typically correspond to
the y coordinate of the world floor;

Figure 3. A graphical representation of a scan volume superimposed on a VRML world representing a building.

Second, one needs to define the accuracy of scanning, which we
define as the length (in VRML units) of the side of each cell. The
value of accuracy will directly influence the accuracy of the
derived map. In general, a smaller value allows one to obtain a
more detailed representation of the world, but the obtained map
will be larger in size and thus will require more time for on-line
computations (e.g., on-line path planning).
For example, in Figure 3, we have set xLen, yLen, zLen, xPos,
yPos and zPos to obtain the electronic map of a subpart of the
world, and then we have set accuracy to 0.25 so that an area of 1
square meter is represented by 4 map cells.
All the parameters that define the scan volume and the accuracy
parameter are fields of the ScanEnvironment script (whose VRML
code is shown in Figure 4). The script computes a list of
coordinates, corresponding to the sequence of viewpoint positions
needed to scan the specified scan volume with the desired
accuracy, using the algorithm outlined in the following.
At initialization time, the script sets the fields of the
NavigationInfo node that will be bound to the ViewPoint
node during the scan. More specifically, the function
setAvatarSize (called in row 16 of Figure 4):

• sets the height of the NavigationInfo node to the value of
yLen (i.e., the height of the scan volume);

• sets the width of the NavigationInfo node (i.e., the radius
of the bounding cylinder of the avatar) to half the accuracy
value (i.e., half length of the side of a map cell). In this way,
the bounding cylinder of the avatar we create for scanning
purposes is exactly contained into each cell of the map (when
positioned in the centre of it). This is done to ensure that,
even in cases when an obstacle is only partially included into
a cell, a collision is guaranteed to be detected.

Moreover, the position field of the script (which will specify
the position of the ViewPoint during the scan) is initialized, in
rows 18-20, to the centre of the top left cell of the map, while its y
coordinate is set to yPos + yLen (i.e., the position of the head of
the avatar used for the scan).
Then, at constant intervals of time (controlled by the
TimeSensor), the cycleTime function of the script computes
and updates (rows 25-32) the next value of the position field so
that the ViewPoint is moved to the centre of subsequent cell that
needs to be considered in the scan volume. Each time the function
is called, the Viewpoint is moved to the cell at the right of the
current cell (rows 25-27) or to the first cell of the next row, if the
end of the current row has been reached (rows 30-32).

2.3.2 Building the map
The purpose of the buildMap script is to create a data structure
that stores the map, i.e. a 2D array (called map) of binary values
(1 for not navigable cells, and 0 for navigable ones). The code of
the buildMap script is shown in Figure 5.
At initialization time, the script initializes the size of the map
required for the scan (rows 13-16 in Figure 5).
The script receives, through its position input event, the current
position of the ViewPoint (sent by the scanEnvironment script)
at constant time intervals, and transforms it into a pair of indexes
(rows 22-23 in Figure 5), that identify the cell of the map where
the ViewPoint is currently located. Whenever a collision
between the avatar and an object geometry is detected, the

Collision node sends an event to the buildMap script; as a
consequence, the script marks the current cell of the map as not
navigable by setting its value to 1 (row 19 in Figure 5). When all
cells of the map have been considered (i.e., a loop event is
received by the buildMap script), the construction of the map
ends.
The derived map can either be printed into the browser console
(and then copied and saved for later use), or directly exploited
inside the world, as we will discuss in Section 3.1.

2.3.3 Personalizing the derived map
The buildMap script is also able to personalize the derived map on
the basis of the size of a specific user’s avatar. When the
personalized field of the script is TRUE, the map is post-
processed as follows: all the cells that do not contain geometries
but are within a circle of radius r from each not navigable cell
(where r is the radius of the bounding cylinder of the user's avatar,
whose size is set in the userAvatarSize field of the buildMap
script) are marked as not navigable cells.

1 DEF scanEnvironment Script{
2 eventIn SFTime cycleTime
3 field SFInt32 xLen 0
4 field SFInt32 yLen 0
5 field SFInt32 zLen 0
6 field SFInt32 xPos 0
7 field SFInt32 yPos 0
8 field SFInt32 zPos 0
9 field SFInt32 accuracy 1
11 eventOut MFFloat avatarSize
12 eventOut SFBool loop
13 eventOut SFVec3f position
14 url "vrmlscript:
15 function initialize(){
16 setAvatarSize();
17
18 position[0] = xPos+(accuracy)/2;
19 position[1] = yPos+yLen;
20 position[2] = zPos+(accuracy)/2;
21 }
22 function cycleTime(){
23 if (position[2]<(zPos+zLen))
24 if (position[0]<(xPos+xLen)){
25 position[0] = position[0]+(accuracy);
26 position[1] = yPos+yLen;
27 position[2] = position[2];
28 }
29 else{
30 position[0] = xPos+(accuracy)/2;
31 position[1] = yPos+yLen;
32 position[2] = position[2]+(accuracy);
33 }
34 else loop = false;
35 }"
36 }

Figure 4. The VRML scanEnvironment script.

This way, only areas of the world that allow the user's avatar to
travel are shown in the map as navigable, while too narrow

passages are shown as not navigable areas. This can be useful for
two purposes: first, it simplifies the activity of algorithms that
reason with the map (e.g., path planning for a virtual character);
second, it produces maps that are simpler to interpret by users. As
an example, Figure 6 shows a VRML world, its map derived with
accuracy=0.25 (i.e. 1 VRML unit correspond to the length of 4
cells in the map), and a personalized map for an avatar with radius
r=0.25.

2.4 Experimental results
We experimentally evaluated the approach on several VRML
worlds, using the Cortona 4.1 VRML player, on a 2.4 Ghz
Pentium 4 PC equipped with a 128 Mb GeForce4 Ti4600 graphics
board.

1 DEF buildMap Script{
2 eventIn SFTime collideTime
3 eventIn SFVec3f position
4 eventIn SFBool loop
5 field SFInt32 xLen 0
6 field SFInt32 zLen 0
7 field SFInt32 xPos 0
8 field SFInt32 zPos 0
9 field SFInt32 accuracy 1
10 field SFBool personalized FALSE
11 field MFFloat userAvatarSize [0,0,0]
12 field MFInt32 map []
13 url "vrmlscript:
14 function initialize(){
15 n = 1/accuracy
16 map[][]=new array[xLen*n][zLen*n];
17 }
18 function collideTime(){
19 map[i][j] = 1;
20 }
21 function position(p){
22 i=(p[0]-xPos)/(accuracy);
23 j=(p[2]-zPos)/(accuracy);
24 }
25 function loop(){

26 if (personalized)
27 /*process the map as described in Section 2.3.3*/ }"
28 }

Figure 5. The VRML buildMap script.

The time required to derive the map varied from a few seconds for
maps with tens of cells, to some minutes for maps with thousands
of cells. For example, the map displayed in the centre in Figure 6
contained about 3000 cells and took five minutes to compute. The
time required for the calculation of a map depends on the number
of cells of the map and on the value given to the cycleInterval
field of the TimeSensor that controls the map derivation process
(roughly it corresponds to number of cells multiplied by
cycleInterval). One would like to set the smallest possible
cycleInterval to minimize the time required to derive the map;
unfortunately, we noticed that with values smaller than 0.1, one
obtains a map that is not accurate (i.e., some cells that do not
contain object geometries are marked as not navigable anyway).
This is probably due to the fact that, with very small values of
cycleInterval, some collision events are lost.

3. Applications of the proposed method
In this section, we discuss how we are using the proposed
approach both for the study and the support of users’navigation in
Web3D worlds.

3.1 Implementation of navigation aids
One of the most relevant usability issues for a Web3D site is the
navigational support provided by its user interface. In current
Web3D sites, people often become disoriented and tend to get
lost. Inadequate support to user navigation is also likely to result
in users leaving the world before reaching their targets of interest,
or to leave users with the feeling of not having adequately
explored the visited world.
A possible solution is to provide the user with electronic
navigation aids to augment her capabilities to explore and learn
(see e.g., [Darken and Peterson, 2001][Li and Ting, 2000][Ruddle
et al. 1999]). In the following, we show how the proposed map
derivation method helps in implementing different kinds of
navigation aids.

Figure 6. A VRML world representing a building (left), the map derived by our method (centre), and the personalized map for an avatar

with r=0.25 (right). Additional not navigable cells in the personalized map have been highlighted in grey.

Figure 7. Displaying the map of the world to the user.

3.1.1 Displaying the map of the world to the user
A well-known navigation aid that we implemented by exploiting
the output of the proposed method is the electronic map of the
world displayed to the user, e.g. as in Figure 7.
The graphical representation of the map can be automatically built
by considering each set of not navigable adjacent cells of the map,
and building an IndexedFaceSet node for that set with:

• Coordinate node containing points the coordinates of cell
corners in the perimeter of the set of cells;

• coordIndex field listing the cell corners in the order one
obtains by sequentially following the perimeter of the set of
cells.

The set of obtained IndexedFaceSet nodes is then placed on a
(possibly semi-transparent) panel, scaled as desired and displayed
to the user (see, e.g. Figure 7).
The advantage of electronic maps is that they help users in rapidly
forming survey navigational knowledge about the virtual world,
i.e., establishing relationships among locations, which allows
them, for example, to evaluate alternate routes. On the other hand,
a common problem with electronic maps is that users need to
translate the exocentric view of the map into their egocentric
view: this requires a considerable mental effort, and can lead to
incorrect interpretations if the map is not properly displayed. For
example, the orientation of the map can greatly influence the
performance of users. The orientation of a north-up map is fixed,
while in a forward-up map the orientation dynamically changes in
such a way that the upward direction of the map always shows
what is in front of the viewer (this can be easily achieved by using
a ProximitySensor that tracks the user's orientation and rotates
the map accordingly). Studies by Aretz and Wickens [1992]
concluded that forward-up maps are better for navigation
purposes, while north-up maps are more indicated for exocentric
tasks (e.g., urban planning). However, users that have experience
with videogames (where north-up maps are more common) seem
to prefer (and obtain better results) with north-up maps [Darken
and Peterson, 2001]. A third possibility is to use a north-up map
with visual momentum (e.g., a triangle showing the actual

direction of the user on the map), an approach that has shown to
combine the advantages of north-up and forward-up maps [Aretz,
1991] (again, this can be obtained by using a ProximitySensor
that tracks the user's orientation and rotates the triangle
accordingly).
The size of the map becomes an issue with large worlds (e.g.,
virtual cities), since it may not be possible to show the entire map
on the area of the screen devoted to this purpose. One possible
solution is to maintain a global map by downscaling. This
approach can effectively support search and path finding;
however, downscaling the map can hide details that are crucial for
navigation (e.g., narrow passages could not be perceived). A
second solution is to adopt a local map, showing only part of the
environment (typically, an area around the user's current position)
with a good level of detail. The disadvantage of this solution is
that the user might have to integrate the spatial knowledge
acquired from different locations to carry out a navigation task.
Ruddle, Payne and Jones [1999] have investigated the efficiency
of local and global maps. According to their study, the
combination of a global and a local map in a large-scale
environment yields the most effective results in a minimum-path
search; when only one map can be displayed, however, it seems
that a local map is more suited to first-time users, while a global
map is more effective when users develop some knowledge of the
environment.

3.1.2 Indicating the path to be followed
Navigation aids that explicitly indicate the path the user should
follow can be used whenever a given destination for the user is
specified, either because the user herself has specified it (e.g., by
selecting it from a list of destinations) or because it is set by the
designer of the world or because it is proposed or predicted by the
system (e.g., on the basis of mouse movements of the user, as in
[Li and Ting, 2000]). The purpose of the navigation aid is then to
help the user in following a path to the destination. This can be
achieved in various ways:

• using constrained navigation techniques, where the user's
control of avatar's movement is limited to avoid erroneous
trajectories and collisions with object. For example, Igarashi

et al. [1998] have presented a simple interaction technique for
walk-throughs in which the user draws the intended path
directly on the scene, and the avatar automatically moves
along the path.

• using signs, such as arrows, breadcrumbs, audio directional
hints, etc. to suggest the walking direction along the path at
each time.

• using virtual guides, i.e., animated characters that travel
towards the destination and help the user by showing her the
way. For example, we have recently proposed the
exploitation of H-Anim guides in Web3D worlds [Chittaro et
al. 2003].

Each of these approaches requires calculation of (or manual
specification of) the path to be followed. A natural solution is to
employ a path planning algorithm [Latombe, 1991], i.e., an
algorithm that is able to derive an optimal (e.g., shortest)
collision-free path from a starting position to a goal position.
Among the various approaches to path planning that have been
proposed in the fields of robotics and virtual environments, grid-
based path-planning algorithms [Latombe, 1991] are able to
compute the path starting from a so-called occupancy grid, i.e. a
map of the environment such as the one derived by the approach
we propose.
As a result, by using the electronic map in combination with a
grid-based path planning algorithm, one can implement the above
mentioned navigation aids and easily guarantee that the path the
user needs to follow will be optimal and free from collisions.
Moreover, since typically the computation of the optimal path
must be carried out very quickly, the possibility of deriving
simpler maps (e.g. with a suitable number of cells) allows one to
constrain the time needed for path planning.

3.2 Building tools to study users' navigation in Web3D
sites
Designing Web3D sites that are easy to navigate is not, in general,
an easy task. This is mainly due to the lack of both proven design
guidelines and proper tools that could help the designer in

identifying and correcting possible navigation problems. On the
other hand, in the context of traditional 2D Web sites, there are
both extensive guidelines and commercial tools devoted to this
purpose.
As a result, the main way to discover usability/design problems in
Web3D sites is to observe how users interact with the site itself.
In particular, one interesting aspect of study is to what extent
users are able to navigate the virtual world and access and see
locations and objects of interest. For example, certain places in the
world may be unreachable or go unnoticed (especially with novice
users) because of narrow passages, hardly detectable paths, and so
on. Observing users can also be useful to simply determine which
parts of the world are most visited (for example, this could be
important in a 3D e-commerce site).
A current limitation in the usability evaluation of Web3D sites is
the lack of software tools to support this activity, and thus the
Web3D developer is forced to implement her own tools, or simply
record usage data with paper and pencil.
The maps derived by the proposed method are an important
building block to develop such topic. For example, we are using
them as a basis to visualize recorded usage data of virtual worlds.
Usage data is obtained by sampling information from various
X3D/VRML sensors in the world, and recording it into a database
(for example, recording of users’ movements can be carried out
using a ProximitySensor that constantly monitors users’
position and orientation), as described in [Chittaro and Ranon,
2002].
In the following, we describe four of the different types of
visualizations of usage data on electronic maps we developed,
discussing also how they can help the Web3D developer in
classifying and evaluating how users navigate in a Web3D site.

3.2.1 Visualizing usage data on the map
The first visualization we discuss simply highlights the
trajectories followed by one or more users during a visit. This is
accomplished by plotting on the map each sampled user's position,
and connecting the obtained dots with lines, as in Figure 8a.

(a) (b) (c)

Figure 8. Using the map from the world in Figure 6 to visualize users’ navigational behaviour: (a) visualizing a user's trajectory; (b)
visualizing several users' trajectories; (c) visualizing areas where the user stayed for more/less time and more/less seen geometries.

By marking each user’s trajectory with a different color, one can
compare the paths followed by different users. However, plotting
all detailed users’ paths on the map can be visually confusing, as
demonstrated by Figure 8b.
To better support an evaluator in studying the behaviour of a
population of users in a Web3D site, one can develop more
complex visualizations based on color-coded areas. For example,
in Figure 8c (see color version), colors on the map indicate how
much time users stayed on each navigable area: red represents the
areas visited by users (the brighter the shade of red, the more time
users stayed on the area; blue represents areas not traveled by
users).
With similar conventions, one can also color map areas according
to how many times users crossed them; in this case, the more
users walk on an area, the brighter the shade of red used to paint
it.

Coloring map areas according to how many times users crossed
them is a time-independent visualization (i.e., it takes into account
only information on paths followed by users), and thus is not
influenced by the traveling speed of users. The other proposed
visualization is instead time-dependent (i.e., take into account the
temporal dimension of recorded data), or, in other words, depend
on the speed at which users travel the world.

By combining different usage data, one is also able to visualize
more/less seen geometries in the world. Since knowing both
position and orientation of a user in time allows one to estimate

how much time the different areas of the world have fallen inside
her field of view, it is possible to visualize this information in the
map using a suitable color coding. For example, in Figure 8c
black represents unseen geometries; green represents the
geometries seen by users (the brighter the shade of green, the
more time the geometry has been seen).

3.2.2 Exploiting map-based visualizations: some examples
We now describe two scenarios that can benefit from the proposed
visualizations.

The first scenario considers a situation where the Web3D
developer is interested in detecting navigation problems in a
Web3D world organized in more than one room. In this case, data
about the time spent by users into each room can be confusing,
because it can depend on the users' interest towards the room
contents. The time-independent visualization, instead, allows one
to easily identify the less visited parts of the world without being
heavily affected by users' interests. Consider, for example, the
visualization in Figure 9 (see color version), which highlights
more/less traveled areas: one can easily notice that the top left
room is the less visited one, although its entrance is close to the
initial position of users. This is probably due to the fact that the
entrance of that room cannot be seen from the initial position of
the user. The visualization also highlights other aspects of users'
behavior, e.g. the fact that the majority of users started the visit by
passing through the closest available door.

Figure 9. Identifying the less visited room using a time-independent visualization with color-coded areas.

Figure 10. A representation of a “fish” visiting style using a time-dependent visualization with color-coded areas.

The second scenario considers a situation where the Web3D
developer is interested in identifying visiting styles and users'
interests in a Web3D site. It is interesting to note that, in the real
world (e.g., in museums), such kind of evaluation have led to
classifications of typical visiting styles, such as [Veron and
Levasseur, 1983]. This specific classification allows one to
identify four main categories of visitors: ants, fishes, butterflies
and grasshoppers, with each category exhibiting a typical

navigational behavior (for example, fish visitors tend to stay in
the centre of a room, and equally devote their attention to all the
objects in the room). By using a time-dependent visualization
with color-coded areas, a similar classification can be exploited
in Web3D sites. For example, Figure 10 (see color version)
allows one to usually detect a typical fish visiting style by
visualizing areas where the user stayed for more/less time and
more/less seen geometries.

4. Conclusions
This paper proposed a method to automatically derive the map of
a X3D/VRML world. The method simplifies the development of
navigation aids and of tools that visualize usage data from past
users' visits to Web3D sites. The proposed method could be also
employed to support on-demand generation of site maps of
Web3D worlds by content providers or even by browser vendors,
for example as a navigation aid for users.
With respect to future goals of this project, we intend to extend its
applicability to X3D/VRML worlds that include obstacles that can
be overcome by the avatar, such as slopes and stairs. Performing
multiple scans of the world at different heights (and then combine
all the derived maps into a single map) may be not a satisfactory
solution in the general case, since it could require a high number
of scans. In particular, it would be interesting to encode elevation
information in the map (as done in some real-world maps),
allowing one to always determine if the avatar can move from its
current cell to a given neighboring cell. This way, one can
determine, for example, that the avatar can easily climb a stair,
while it cannot climb a steep mountain in the virtual world.

5. Acknowledgements
This work is partially supported by the MIUR COFIN 2003
program (project “User Interfaces for the Visualization of
Geographical Data on Mobile Devices”) and by the Friuli Venezia
Giulia region (Regional Law 3/98, project “3D Web Sites for the
Promotion of Tourism and Cultural Heritage”).

6. References
ARETZ, A.J., AND WICKENS, C.D. 1992. The Mental Rotation of Map

Displays. Human Performance, 5(4), 303-328.
ARETZ, A.J. 1991. The design of electronic map displays. Human

Factors, 33, 85-101.

BANDI, S. 1998. Discrete object space methods for computer animation.
PhD thesis, Swiss Federal Institute of Technology, Lausanne,
Switzerland.

CHITTARO L., RANON R., AND IERONUTTI L. 2003. Guiding Visitors of
Web3D Worlds through Automatically Generated Tours. In
Proceedings of Web3D 2003: 8th International Conference on 3D
Web Technology, ACM Press, New York, 27-38.

CHITTARO L., AND RANON R. 2002. Dynamic Generation of
Personalized VRML Content: a General Approach and its Application
to 3D E-Commerce. In Proceedings of Web3D 2002: 7th International
Conference on 3D Web Technology, ACM Press, New York, 145-
154.

DARKEN, R.P., AND PETERSON, B. 2001. Spatial Orientation,
Wayfinding, and Representation. In Stanney, K., ed., Handbook of
Virtual Environment Technology, Laurence Erlbaum Associates, New
Jersey.

DARKEN, R.P., AND SIBERT, J.L. 1996. Wayfinding Strategies and
Behaviors in Large Virtual Worlds. In Proceedings of CHI '96, ACM
Press, New York, 142-149.

KUFFNER, J.J. 1998. Goal-Directed Navigation for Animated Characters
Using Real-Time Path Planning and Control. In Proceedings of
CAPTECH '98: Workshop on Modelling and Motion Capture
Techniques for Virtual Environments, Lecture Notes in Artificial
Intelligence 1537, Springer-Verlag, Berlin, 171-187.

IGARASHI, T., KADOBAYASHI, R., MASE, K., AND TANAKA, H. 1998.
Path drawing for 3d walkthrough. In Proceedings of UIST, 173-174.

LATOMBE, J.C. 1991. Robot Motion Planning. Kluwer Academic
Publisher, Boston, MA.

LENGYEL, J., REICHERT, M., DONALD, B.R., AND GREENBERG, D.P.
1990. Real-time robot motion planning using rasterizing computer
graphics hardware. In Proceedings of SIGGRAPH '90, ACM Press,
New York, 327-336.

LI, T., AND TING, H. 2000. An Intelligent User Interface with Motion
Planning for 3D Navigation. Proceedings of the IEEE Virtual Reality
Annual International Symposium. New Brunswick, NJ, USA, 177-
184.

RUDDLE, R.A., PAYNE, S. J., AND JONES, D.M. 1999. The effects of
maps on navigation and search strategies in very-large-scale virtual
environments. Journal of Experimental Psychology: Applied, 5(1),
54-75.

VERON, E., AND LEVASSEUR, M. 1983. Ethnographie de l'Exposition.
Paris, Bibliothque publique d'Information, Centre Georges Pompidou.

