
A Virtual Human Architecture that Integrates Kinematic, Physical and
Behavioral Aspects to Control H-Anim Characters

Lucio Ieronutti(1)

HCI Lab
Dept. of Math and Computer Science,

University of Udine
via delle Scienze, 206

33100 Udine, Italy

Luca Chittaro(2)
HCI Lab

Dept. of Math and Computer Science,
University of Udine

via delle Scienze, 206
33100 Udine, Italy

Abstract
Virtual humans are being increasingly used in different domains.
Virtual human modeling requires to consider aspects belonging to
different levels of abstractions. For example, at lower levels, one
has to consider aspects concerning the geometric definition of the
virtual human model and appearance while, at higher levels, one
should be able to define how the virtual human behaves into an
environment. H-Anim, the standard for representing humanoids in
X3D/VRML worlds, is mainly concerned with low-level
modeling aspects. As a result, the developer has to face the
problem of defining the virtual human behavior and translating it
into lower levels (e.g. geometrical and kinematic aspects). In this
paper, we propose VHA (Virtual Human Architecture), a software
architecture that allows one to easily manage an interactive H-
Anim virtual human into X3D/VRML worlds. The proposed
solution allows the developer to focus mainly on high-level
aspects of the modeling process, such as the definition of the
virtual human behavior.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques -- Interaction techniques. I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism -- Virtual reality. H.5.1
[Information Interfaces and Presentation]: Multimedia
Information Systems -- Artificial, augmented, and virtual realities.

Keywords: H-Anim, Virtual Humans.

1. Introduction
Virtual humans, i.e. three-dimensional simulations of human
beings, are being increasingly used in different domains. For
example, they are used to explain physical and procedural human
tasks [Badler et al. 2002; Rickel and Johnson 1999], they are
employed in military applications [Traum and Rickel 2002], in
ergonomics [Badler 1997], to simulate emergencies in first aid
[Cassell et al. 1994], and as virtual guides [Chittaro et al. 2003;
2004].

(1) e-mail: ieronutt@dimi.uniud.it

(2) e-mail: chittaro@dimi.uniud.it

Proper development of virtual humans requires knowledge of
different disciplines, such as computational geometry, kinematics,
artificial intelligence, computer graphics, and bio-mechanics. The
complexity of building virtual humans encourages to divide the
problem in several sub-problems; this can be done with the five-
levels hierarchy proposed by [Funge et al. 1999], shown in Figure
1.

Figure 1. The modeling hierarchy proposed by [Funge et al.

1999].

The lowest layer of the modeling hierarchy is the geometric layer
that concerns the definition of the virtual human model and its
appearance. At the kinematic layer, the virtual human is
represented as a set of rigid bodies, called segments, hierarchically
organized and connected by joints. From this point of view, an
animation can be defined in two ways: by specifying joints
rotations, or by defining (or automatically computing) positions of
specific parts of the virtual human body (called end-effectors) in
time. The latter approach uses inverse kinematics to compute the
joints configuration (in terms of rotation values) needed to put
end-effectors in particular positions; this approach is commonly
used to control hands and feet movements. At the physical layer,
the animation is obtained by applying physical laws to different
parts of the virtual human body to compute complex animations,
such as skin deformation or hair movement. The behavioral layer
represents the instinctive behavior of the virtual human (e.g. in
terms of stimulus-action associations), while the highest layer, the
cognitive one, binds various stimuli with reasoning processes that
allow the virtual human to search for the most suitable action.
Cognitive models go beyond behavioral models in that they
govern what the virtual human knows, how that knowledge is
acquired, and how it can be used to plan actions.
H-Anim [2004], the standard for representing humanoids in
X3D/VRML worlds, deals only with lower layers of the modeling
hierarchy. The standard defines the hierarchical structure of the
virtual human in terms of Segment and Joint nodes, it defines

the Site node to identify locations of semantic interest on the
virtual human body (e.g. they can be used by inverse kinematics
systems), and it uses the Displacer node to specify a particular
mesh deformation (e.g. it can be used to produce facial
expressions). On the other hand, H-Anim does not specify neither
how to define the virtual human behavior nor how the different
layers can be integrated.
As a result, when the developer wants to include an interactive
virtual human into a X3D/VRML world, she has to write a
considerable amount of code that is related to the different layers
of the hierarchy. Moreover, most of this ad-hoc work has to be
rethought if the developer needs to integrate the virtual human
into another application. Therefore, the implementation of virtual
humans is an inefficient and partly undisciplined activity for the
developer.
In this paper, we present VHA (Virtual Human Architecture), a
software architecture that allows one to develop interactive H-
Anim virtual humans by clearly separating the geometrical,
kinematic, physical and behavioral layers of the modeling
hierarchy. The goal of our work is twofold. First, we intend to
study a possible solution to overcome some modeling problems of
H-Anim virtual humans. Second, we intend to propose an
architecture that, although less sophisticated than other
architectures, can be easily run on the Web using common PCs.
This paper is structured as follows. First, in Section 2, we discuss
related work. Then, in Section 3, we describe the software
architecture we propose. In Section 4, we illustrate some
implementation choices we have taken for implementing the
architecture. Section 5 outlines two case studies we used for
testing our solution. Finally, in Section 6, we discuss the current
limitations and future developments of the proposed architecture.

2. Related Work
Simulating human motion and behavior using a computer is an
active research area (see, e.g. [Ponder et al. 2003; Badler et al.
2002]) and different approaches have been proposed in literature.
Each approach considers the appearance, function and autonomy
of the virtual human with respect to specific levels of detail and
accuracy, and given application areas.
A commercial system that comprises many aspects of human
motion and simulation is Jack [Badler et al. 1993], an interactive
system for the definition, manipulation, animation, and
performance analysis of virtual humans. Jack is suitable for
ergonomics applications and contains kinematic and dynamic
models of humans to simulate complex behaviors, such as
balance, grasping and walking. A similar system is HUMANOID
[Boulic et al. 1995], which includes modules to compute
deformations of the skin, hand and face of the virtual human.
VLNET [Pandzic et al. 1998] is a networked multi-user virtual
environment that uses the HUMANOID articulated body model as
a basis for virtual human display and motion.
Another interesting system is STEVE (Soar Training Expert for
Virtual Environments) [Rickel and Johnson 1999]: STEVE can
demonstrate skills to students, answer student questions, watch
the students as they perform the tasks, and give advice if the
students run into difficulties. However, the complex
functionalities provided by STEVE require to run different
modules of the system in parallel as separate processes, possibly
on different computers.
Some systems allow one to define the behavior of virtual humans
through scripting languages. In this context, an interesting system
is Improv [Perlin and Goldberg 1996] that represents each virtual
human behavior as a set of rules that specify how the virtual

human communicates and takes decisions. However, Improv is
more suitable for interactive storytelling rather than virtual
environments. Another interesting system is SimHuman
[Vosinakis and Panayiotopoulos 2001]: it simulates virtual
humans with planning capabilities and is devoted to support real-
time applications, taking into account requirements of natural
looking motion and acceptable execution speed.
Another interesting system is VHD++ [Ponder et al. 2003], a real-
time software framework (written in C++) for developing virtual
and augmented reality applications employing advanced virtual
character simulation technologies. In particular, VHD++ is an
efficient, flexible and extendible framework based on modern 3D
game-engine design principles. VHD++ can be employed in a
large number of different scenarios; it has been used i) in
simulations of cultural heritage involving architecture, acoustics
and cloths, ii) in augmented reality applications for maintenance
training, iii) in edutainment systems based on storytelling and iv)
in immersive applications designed to train non-professional
health emergency operators.

3. The Proposed Virtual Human Architecture
VHA (Virtual Human Architecture) is a software architecture that
allows one to develop interactive H-Anim virtual humans by
clearly separating the geometrical, kinematic, physical and
behavioral layers of the modeling hierarchy. In particular, VHA
allows one to implement virtual humans whose behavior is based
on the Sense-Decide-Act paradigm; the virtual human is able to
perceive what happens in the surrounding environment (sense
process), to decide a proper reaction (decide process) and to
perform the related actions in the Web3D world (act process).
The main features of VHA are the following. First, the
architecture is general, since it does not depend from a specific
virtual human application and 3D world.
Second, it finds a good compromise between the required realism
of the representation (at each level of the modeling hierarchy) and
the efficiency of the simulation (the simulation has to be run in
real-time on common PCs).
Third, unlike all systems described in Section 2, the VHA
supports execution on the Web, since it is completely based on
Web standards, such as X3D/VRML, H-Anim and Java.
To integrate an interactive H-Anim virtual human into a virtual
environment, the VHA uses the following data: i) specification of
how the virtual human should react to users’ actions, ii) the virtual
environment topology (e.g. navigable areas), iii) information
about objects (e.g. position and geometry of an object), iv) a set of
virtual human animations and v) the H-Anim model of the virtual
human.
The main internal modules of the architecture (depicted in Figure
2) are the Behavioral Engine, the Execution Engine and the
Presentation Module. The Behavioral Engine refers to the
Behavioral layer of the modeling hierarchy (the sense and decide
processes), the Execution Engine deals with the kinematic,
physical and geometric layers (the act process), while the
Presentation module is used by the system for presenting
textual/vocal information to the user.
The Behavioral Engine senses user’s actions and identifies the set
of high-level actions the virtual human has to perform in response.
These actions are sent to the Execution Engine, which both
identifies the animations the virtual human has to perform and
retrieves information to be provided to the user. Information is
sent to the Presentation Module that transforms the textual data in
a format suitable for the presentation.

Figure 2. The proposed Virtual Human Architecture.

In the following sections, we describe each module of the
proposed architecture in more detail.

3.1 The Behavioral Engine
The Behavioral Engine senses environment events and determines
the proper virtual human actions. Environment events are stored
into an internal buffer (called Events Buffer). The Behavioral
Engine defines how the virtual human behavior in terms of Finite-
State Machines (FSMs). In particular, FSMs allow the developer
to specify how the virtual human behaves, given its current
internal state and by considering events stored into the Events
Buffer.
A FSM is represented by a directed graph G = (V, E), where V
represents a set of nodes ni, and E represents a set of oriented
edges (ni, nj). Each node corresponds to a particular state of the
virtual human, while each edge corresponds to a transition that
allows the virtual human to change its internal state.
Conventionally the node n0 represents the initial state, and nodes
that do not have outgoing edges are called end states.

Each transition (ni, nj) is characterized by conditions-actions (cij,
aij) pairs: cij is the set of conditions that determine the
applicability of the transition, while aij is the set of actions
(animation performed and information presented) the virtual
human has to execute if the corresponding transition is activated.
Figure 3 shows a FSM that describes a very simple virtual human
behavior. The FSM is represented by three states (n0, n1 and n2)
and four transitions ((n0, n1), (n0, n2), (n2, n2) and (n2, n1)), each
one characterized by one conditions-actions (cij, aij) pair.
The correspondent virtual human behavior is the following. If
both the user and the virtual human are close to an object called
object_1 (c01), the virtual human presents the object (a01). On
the other hand, if they are far from the object (c02), the virtual
human firstly invites the user to follow it, and then it walks to the
object (a02). The virtual human waits (a22) until the user is close
enough to the object (c22); when this happens, i.e. the user is near
the object (c21), the virtual human presents it (a21).

Figure 3. An example of a simple Finite-State Machine (FSM).

Figure 4. An example of a Hierarchical-State Machine (HSM)

A transition (ni, nj) can be activated by the Behavioral Engine if
and only if all corresponding conditions cij are satisfied; a single
condition of cij is considered satisfied when it matches with an
event stored into the Events Buffer. Conditions can concern
events generated by explicit user actions (e.g. an object has been
touched by the user), they can refer to spatial relations (e.g. the
user is close to the virtual human) or temporal conditions (e.g.
the user does not interact with any object for some time). The
decision process is activated whenever all actions of the
previously activated transition have been executed by the
system; in other words, in our model the execution of a set of
actions aij is not interruptible.
Once a transition (ni, nj) is activated, the Behavioral Engine
deletes all events stored into the Events Buffer, sends to the
Execution Engine the list of actions aij, and then starts to sense
new events.
VHA allows one to describe complex virtual human behavior
through Hierarchical-State Machines (HSMs), i.e. hierarchical
compositions of FSMs. Each graph node can be either a basic
state (i.e. it belongs to V) or a state that contains the description
of a particular behavior (represented through a HSM itself). In
our system, a transition can be activated if and only if the current
virtual human state is an end state belonging to the underlying
level (e.g. in Figure 4 the transition (n1, n2) can be activated if
the current virtual human state is n11). The hierarchy is multi-
level, since each HSM can contain nodes that do not represent
basic states. For a formal treatment of HSMs, readers can refer
e.g. to Mikk [Mikk et al. 1997].
Figure 4 shows the typical structure of a HSM; in this example,
the HSM is composed by two levels and represents a simple
virtual guide behavior (e.g. the virtual human leads the user
through the environment by presenting sequentially two objects).
The top layer is composed by three nodes (n0, n1 and n2) and
represents the high-level description of the virtual guide
behavior. In particular, node n0 represents the initial state of the
virtual guide, while n1 and n2 correspond to the presentation of
two different objects. The lower level is represented by two
HSMs corresponding to descriptions of more specific virtual
guide behaviors. For example, the developer can place into the
node n1 the FSM depicted in Figure 3 to describe the particular
virtual human behavior corresponding to object_1
presentation.
Given a current state of the virtual human, the Behavioral
Engine senses environment events, determines what conditions
are satisfied, identifies applicable transitions, activates one of
them and sends to the Execution Engine the ordered list of
actions associated with the chosen transition. Actions

correspond to animations that the virtual human has to perform
and information that has to be presented to the user.

3.2 The Execution Engine
To define an animation for H-Anim virtual humans, the
developer has to specify different joint rotation values over time;
the resulting virtual human motion is generated by smoothly
interpolating specified rotation values. Similarly, to define a
mesh deformation (e.g. the skin of the virtual human face is
modified to obtain a facial expression), she has to specify
different positions of mesh vertexes over time; the resulting
deformation is obtained by interpolating specified position
values. This kind of animations are called pre-stored
animations, since the complete description of the movement has
to be specified in advance.
Another kind of animation, called parametrized animations, is
more convenient to animate a virtual human. Parametrized
animations are more general and flexible than pre-stored ones,
since they allow one to generate a variety of movements only by
changing a small set of animation parameters. Parametrized
animations are usually based on inverse kinematics to control
end-effectors movements (e.g. virtual human feet and hands) and
employ path planning algorithms to generate collision-free
motions.
The Execution Engine is able both to use pre-stored animations
(e.g. recorded by using Motion Capture devices) and to run
parametrized animations at execution-time. Each parametrized
animation is represented by an animation model that describes
how the animation is generated starting from a set of given
parameters. An animation model can use information on the
topology of the environment (e.g. areas that can be traveled by
the virtual human), object information (e.g. object position and
geometry) and parameters explicitly given by the developer (e.g.
a command (walkTo coord 5 2 4)) to generate the virtual
human animation.

3.3 The Presentation Module
The Presentation Module allows the virtual human to present
textual information to the user. The required information can be
shown on a 2D On-Screen Display (OSD) into the virtual
environment (Figure 5) and/or presented by using a synthesized
voice.
The Presentation Module can format the given textual
information to adapt the visualization according to the display
dimension and, at the same time, can control the synthesized
voice volume by taking into account the distance between the
virtual human and the user.

Figure 5. A textual information displayed on the OSD.

4. VHA Implementation
In this Section, we provide some implementation details such as
the models used for generating parametrized animations and the
algorithms employed for the Path Planning, the Inverse
Kinematics, the Physically-based Simulation and the Collision
Detection modules (shown in Figure 2). Obviously, different
approaches could be followed to implement the same modules
without changing the general architecture.

Our implementation choices are described in the following
Section, while in Section 4.2 we present how we integrate VHA
into a generic VRML environment.

4.1 Animation models
The Execution Engine we implemented contains different
animation models, but the most relevant ones are the grasp
model, the walk model, and the model that allows the virtual
human to perform facial expressions (Figure 6 shows examples
of animations produced by the three models). Animation models
use pre-stored data, the Inverse Kinematics, the Path Planning,
the Collision Detection and the Physically-based simulation
modules to generate the motion.

The grasp model we implemented employs the Multi-sensor
approach [Huang et al. 1995] to simplify the collision-detection
algorithm. This technique hangs spherical sensors to the
articulated figure and activates each sensor for any collision
(detected by the Collision Detection module) with other objects
or sensors. The Inverse Kinematics module is used by the grasp
model to compute joint rotation values suitable to place the
virtual human hands in the required positions.

The walk model we implemented allows the virtual human to
walk on both even and uneven terrains. The walk model
combines the automatic generation of human walking motion
(based on the model proposed by [Chung and Hahn 1999]) with
trajectory information (automatically derived by the
implemented Path Planning module). In particular, the walk
model first uses both the trajectory information and the data
representing the walking surface topology to derive foot and
pelvis trajectories. Then, it employs the Inverse Kinematics
module to compute proper joint rotation values for the virtual
human legs. Finally, the walk model employs generic pre-stored
data to animate the upper part of the virtual human body.

Figure 6. Example of parametrized animations supported by

VHA: a) grasping, b) walking on uneven surfaces and c) facial
expressions.

The animation model for facial expressions employs the muscle-
based approach [Lee et al. 1995] that controls facial expressions
by acting on muscle contractions. In particular, the model we
implemented represents the virtual human face as a deformable
multi-layered mesh; nodes of the mesh are considered mass
elements connected by spring elements. Nodes are arranged in
three layers: the top layer represents the epidermis, the middle
layer represents the tissue, and the bottom layer represents the
skull surface. The elements between the top and middle layers
represent the fatty tissues, while the elements between the
middle and bottom layer represent the facial muscles. The mesh
is driven by modeling the activation and motion of several facial
muscles in various facial expressions. The Physically-based
Simulation module is used to simulate the skin behavior.
In the following, we give an overview of the techniques we
employed for implementing the Path Planning, the Inverse
Kinematics and the Physically-based Simulation modules.
Path Planning. Many algorithms have been proposed for path
planning (a good survey of classical methods is presented in
[Latombe 1991]). The approach we implemented for the Path
Planning module captures the topology of the configuration
space (i.e. collision-free positions) by representing it into a
graph structure. The Path Planning technique we use is an
extended version of the approach we presented in [Chittaro et al.
2003]. This new version computes a collision-free path also in
multi-floor environments. Each floor of the virtual environment
is represented as an Occupancy Grid, a two dimensional matrix
such that: (i) each cell of the matrix corresponds to an area of the
floor and, (ii) the value of the cell indicates whether the
corresponding area contains a geometry or not. The Path
Planning module derives from the Occupancy Grids a graph that
captures the topology of the environment. This structure allows
the Path Planning module to compute collision-free paths by
employing a traditional searching algorithm (e.g. Dijkstra or
A*). To automatically derive Occupancy Grids starting from a
X3D/VRML world, we employ the technique we proposed in
[Ieronutti et al. 2004]. The basic idea of this technique is to
determine whether a cell of the floor should indicate the
presence of geometry that prevents navigation, by checking if
the corresponding area in the world can be traveled by an avatar
created for the purpose.
Inverse Kinematics. Inverse kinematics can use different
methods to solve the problem of finding the joints configuration

that allows the end-effector to reach the desired position. Two
main categories of solutions can be identified in the literature:
closed form solutions and numerical solutions [Lucas et al.
2000]. The first category of approaches analytically computes a
solution by using non-iterative calculations. In general, these
systems employ algebraic and geometric techniques to compute
a solution quickly and precisely. On the other hand, it is better to
choose numerical solutions when the system is too complicated
for the closed form methods; numerical solutions use iterative
calculations to approach a solution as closely as possible,
requiring a longer time. However, this type of approaches can
solve also very complex kinematic systems. An alternative
technique, based on neural networks, has been proposed to solve
inverse kinematic systems [de Lope et al. 2003]. The Inverse
Kinematics module we implemented belongs to the first
category of solutions; it solves the problem of moving limbs
composed of two segments in a three-dimensional space.
Physically-based Simulation. The Physically-based simulation
module we implemented allows VHA to simulate elastic
surfaces through a mass-spring system. The dynamic behavior of
a surface is computed by numerically integrating positions and
velocities of mass elements over time. The computation cost of
the simulation is mainly due to numerical integration of the
ordinary differential equation systems that model the deformable
surface. The simulation engine we employ has been described in
detail in [Chittaro and Corvaglia 2003] and implements three
explicit integration methods, while implicit methods have not
been considered (to limit simulation complexity).

4.2 VRML nodes introduced for using VHA
From a VRML point of view, VHA is seen as a PROTO (row 1
in the listed code below). Whenever the developer intends to
include the VHA into a virtual environment, she has to
instantiate the VHA node by specifying the virtual human
behavior (row 3), environment information (row 4), object
information (row 5), the set of pre-stored animations the virtual
human is able to perform (row 6) and the H-Anim model
representing the virtual human (row 7).
VHA senses environment events (e.g. the user interacts with a
TouchSensor node) through the VeEvent eventIn (row 2).
The developer can choose arbitrarily the syntax used for
representing environment events, provided that she follows the
same syntax in the HSMs conditions.
In particular, the behaviors, objects and animations of
the VHA fields contain respectively a list of Behavior,
Object and Animation nodes. Moreover, the first element
of the behaviors field represents the top layer of the HSM,
while the other elements (representing HSMs belonging to lower
layers) are loaded only when needed by using a command
(import behavior behavior_Name).

1. PROTO VHA [
2. eventIn SFString VeEvent
3. exposedField MFNode behaviors []
4. exposedField SFNode environment

Environment{}
5. exposedField MFNode objects []
6. exposedField MFNode animations []
7. exposedField SFNode humanoid Humanoid{}
8.]{… }

In the following sections, we describe the VRML PROTOs
introduced for integrating the VHA into VRML words, by
presenting their interfaces.

4.2.1 Behavior node
Each virtual human behavior is represented by a Behavior
PROTO (row 9). The node is characterized by the name of the
behavior (row 10) and contains information on HSM transitions
(row 11); each transition (row 13) is characterized by a set of
conditions (row 14) and actions (row 15), both represented by
using a string array. Each single string represents a different
condition or action, while empty spaces are used to separate
different parameters.

9. PROTO Behavior [
10. exposedField SFString name ""
11. exposedField MFNode transitions []
12.]{ }

13. PROTO Transition [
14. exposedField MFString conditions ""
15. exposedField MFString actions ""
16.]{ }

4.2.2 Environment node
The Environment PROTO (row 17) stores information on the
topology of the environment; the VHA uses this information to
control virtual human movements through multi-floor virtual
environments.
In particular, the Environment PROTO is characterized by the
address of the file containing the virtual environment (row 18),
the set of parameters used for deriving obstacles information
(rows 19-23), floor information (row 24) and information on the
stairs connecting different floors (row 25). xLen, zLen,
accuracy, xPos and zPos (rows 19-23) represent parameters
used for the automatic derivation of the occupancyGrid (see
[Ieronutti et al. 2004] for the precise meaning of these
parameters). The floors (row 24) and stairs (row 25) fields
of the Environment node contains respectively a list of Floor
and Stair nodes.

17. PROTO Environment [
18. exposedField SFString url ""
19. exposedField SFInt32 xLen 0
20. exposedField SFInt32 zLen 0
21. exposedField SFInt32 accuracy 1
22. exposedField SFInt32 xPos
23. exposedField SFInt32 zPos
24. exposedField MFNode floors []
25. exposedField MFNode stairs []
26.]{ }

The Floor PROTO (row 27) contains information on the surface
on which the virtual human has to walk; this information is
represented by a pair of two-dimensional matrices, the
occupancyGrid (row 28) and the heightGrid (row 29). The
occupancyGrid corresponds to the Occupancy Grid described
in Section 4.1; this information is represented as a string in
which the empty character and the character ‘X’ are used for
identifying respectively travelable areas and areas that contain
an obstacle to the virtual human navigation. The heightGrid

is a matrix having the same dimensions of the occupancyGrid,
but in which the value of each cell specifies the height of the
surface above the corresponding area (like the field height of
the X3D/VRML ElevationGrid node). If the floor surface is
completely flat, the heightGrid can be represented by an
integer that specify the vertical position of the floor surface with
respect to the absolute coordinate system.

27. PROTO Floor [
28. exposedField SFString occupancyGrid ""
29. exposedField MFFloat heightGrid 0
30.]{ }

Different floors can be connected by stairs (row 31); each stair is
defined by its position (row 32) and by a pair of integers that
specifies which floors the stair connects (floorL stands for
lower floor while floorU stands for upper floor, rows 33-34).
The other three parameters (rows 35-37) define other
characteristics of the stair; the first one represents the number of
steps of the stair and the other two parameters represents
respectively the height and the length of a single step.

31. PROTO Stair [
32. exposedField SFVec3f position 0 0 0
33. exposedField SFInt32 floorL 0
34. exposedField SFInt32 floorU 0
35. exposedField SFInt32 numSteps 0
36. exposedField SFFloat stepHeight 0
37. exposedField SFFloat stepLength 0
38.]{ }

4.2.3 Object node
Object information is represented by the Object PROTO (row
39). In particular, the node specifies the name of the object (row
40), its position and orientation (rows 41-42), textual
information (row 43) and the definition of the object geometry
(row 44).
VHA uses object names for identification purposes; this way,
actions can use the name of an object as a parameter (e.g. goTo
object printer). The object position and orientation are used
both to position the object into the virtual environment and to
identify a position of semantic interest (e.g. the above parameter
printer is automatically associated to the corresponding
position). We have included in Object node the description
field since in several contexts it can be useful to associate textual
information to different objects e.g. the description of an object
can be presented by the virtual human by simply using the
action (describe object_Name).

39. PROTO Object [
40. exposedField SFString name ""
41. exposedField SFVec3f position 0 0 0
42. exposedField SFRotation orientation 0 1 0 0
43. exposedField SFString description ""
44. field MFNode shape NULL
45.]{ }

4.2.4 Animation node
The VHA supports both pre-stored animations and parametrized
ones. Pre-stored animations are represented through the

Animation PROTO (row 46). A pre-stored animation is
characterized by its name (row 47), duration (row 48), the
number of times the animation has to be repeated (row 49) and
the Interpolators node (row 50). The Interpolators
PROTO (row 54) specifies both the key and keyValue fields for
a list of OrientationInterpolators, each one related to a
different (H-Anim) joint involved in the motion (the PROTO
includes a field for each H-Anim joint).

The Animation node we implemented provides the possibility
to organize different animations in groups; each animation can
belong to a group of animations, whose name is defined by the
field group (row 52). The probability field (row 53)
represents the probability the animation is chosen by the
Execution Engine when it needs to retrieve an animation
belonging to a specific group.

46. PROTO Animation [
47. exposedField SFString name ""
48. exposedField SFTime duration 0
49. exposedField SFInt32 loop 1
50. exposedField SFNode interpolators
51. Interpolators{}
52. exposedField SFString group ""
53. exposedField SFFloat probability 1
54.]{ }

55. PROTO Interpolators [
56. exposedField MFVec3f HumanoidRoot_KV []
57. exposedField MFFloat HumanoidRoot_K []
58. exposedField MFVec3f Sacroiliac_KV []
59. exposedField MFVec3f …
 …
60.]{ }

The organization into groups of animations allows the system to
improve the variety of the virtual human motion. For example,
suppose that the developer has defined several waiting
animations (e.g. the virtual human looks around, scratches its
head, breaths, …) and the virtual human is waiting for user
action. The system is able to automatically retrieve a waiting
animation by considering the probability associated to each
single animation that belongs to the required group (e.g. it is
more probable that the virtual human breaths rather than
scratching its head). Moreover, given a wide number of pre-
stored animations, this approach allows the developer to modify
how the virtual human behaves only by changing the
probability value of different animations.

4.2.5 Presentation node
The Presentation PROTO (row 61) implements the
Presentation Module (described in Section 3.3); in particular, the
node is used by VHA for presenting information to the user.
Through the Presentation node, textual information is at the
same time displayed on a OSD and presented by using a
synthesized voice (e.g. by using Microsoft TTs engine).
The implemented OSD follows the user, and then requires the
position and orientation of the user (rows 62-63) to update its
position during user’s movements. Given the text to be
displayed (row 64), the node adapts the corresponding string
visualization according to the display dimension (defined in
rows 66-67).

61. PROTO Presentation [
62. eventIn SFVec3f userPosition
63. eventIn SFRotation userRotation
64. eventIn SFString text
65. eventIn SFFloat distance
66. field SFFloat xDim
67. field SFFloat yDim
68.]{…}

To present information by using a synthesized voice, the
Presentation PROTO sends to a JavaScript (inserted into an
hidden HTML frame) the text that has to be spoken (row 64).
Moreover, given the distance between the user and the virtual
human (row 65), the Presentation PROTO controls the
synthesized voice volume.

5. Case Studies
The proposed architecture can be easily integrated into a generic
X3D/VRML world. To test the effectiveness of VHA, we
considered two different case studies. First, we employed a
virtual human into a 3D Computer Science museum based on a
VRML world representing a data processing center of the 70’s
(see Figure 7). Second, we used the same virtual human as a
guide into an architectural virtual reconstruction of cultural
heritage (see Figure 8). Although the considered Web3D sites
differ in purpose and content, only a few minor modifications
(e.g. the description of the virtual human behavior and
environment information) have been necessary to move from the
first to the second application.

Figure 7. The virtual human explaining the functioning of the

card punch in the Computer Science museum.

While in the first environment the virtual human is able to
provide technical information by demonstrating how different
devices worked, in the second application the same virtual
human is used to tell the story of different buildings and
highlight the main architectural differences.
In particular, for the first application, we have defined different
HSM corresponding to different virtual human behaviors, each
one designed to highlight a different aspect of the Computer
Science museum (e.g. an high-level introduction to the overall
environment, an explanation of the hardware architecture, a
description of work activities). The user, according to her
personal interests and needs, can choose (and change during the
visit) the topics the virtual human has to explain.

Figure 8. The virtual human providing architectural information.

Recently we have evaluated the positive effects of using virtual
humans in the context of virtual museums and in making a
virtual place more lively and attractive for users [Chittaro et al
2004]. As a navigation aid, the virtual human proved to be
appreciated in the evaluation; it was mostly rated as simple to
use, and it had the advantage of being unobtrusive for the expert
user. Moreover, using the virtual human demanded a very short
learning time, probably because, from a human-computer
interaction point of view, the virtual human metaphor has the
advantage of being consistent with the real-world experience of
users. On the other hand, by analyzing the most frequent
concerns expressed by subjects, there is a clear need for
personalization capabilities. For example, walking and talking
speed of the virtual human were both rated too slow or too fast
by some users: the ideal solution would be to adapt these
features on the basis of each single user's preference.

6. Conclusions
This paper proposed VHA, an architecture that integrates the
kinematic, physical and behavioral aspects to control H-Anim
virtual humans. The proposed solution, fully compatible with
Web standards, allows the developer to easily augment
X3D/VRML worlds with interactive H-Anim virtual humans
whose behavior is based on the Sense-Decide-Act paradigm
(represented through HSMs).
With respect to future goals of this project, we plan to extend
VHA in order to support more than one H-Anim virtual human
at the same time, and allowing virtual humans to interact with
each other. Moreover, we intend to improve the capability of
generating parametrized animations. From this point of view, we
intend to integrate into the architecture two additional modules:
a module to synchronize lip movements with spoken information
and one to consider reachability problems for the generation of
the grasping movement. Furthermore, since the time required for
describing complex virtual human behavior (e.g. when the HSM
is represented by more than 30 states) can be considerable, we
plan to develop an authoring tool that allows the Web3D content
creator to define the virtual human behavior either through a
graphical user interface or by employing a more abstract
programming language (e.g. by using the Virtual Human
Markup Language [VHML 2004]).
Finally, we plan to develop the cognitive layer into the proposed
architecture; reasoning processes should allow to control what

the virtual human knows, how that knowledge is acquired, and
how it can be used both to plan actions and to generate virtual
human emotions. In this context, we have separately studied
[Chittaro and Serra 2004] a system for modeling personality
aspects into H-Anim virtual humans. To develop a Cognitive
Module for VHA, we have started using the Java Expert System
Shell [Jess 2004], that allows us to simulate reasoning processes
by employing a knowledge base and a set of declarative rules.

7. References
BADLER N. 1997. Virtual Humans for Animation, Ergonomics, and

Simulation. In Proceedings of NAM '97: IEEE Workshop on Motion
of Non-Rigid and Articulated Objects, IEEE Computer Society,
USA.

BADLER, N., ERIGNAC, C., and LIU, Y. 2002. Virtual humans for
validating maintenance procedures. Communications of the ACM,
45(7), 56-63.

BADLER, N., PHILLIPS, C., WEBBER, B. 1993. Simulating Humans:
Computer Graphics Animation and Control. Oxford University
Press.

BOULIC, R., HUANG, Z., SHEN, J., MOLET, T., CAPIN, T.,
LINTERMANN, B., SAAR, K., THALMANN, D., MAGNETAT-
THALMANN, N., SCHMITT, A., MOCCOZET, L., KALRA, P., and
PANDZIC, I. 1995. A system for the parallel integrated motion of
multiple deformable human characters with collision detection. In
Proceeding of EUROGRAPHICS’95, 14(3), 337-348.

CASSELL, J., PELACHAUD, C., BADLER, N., STEEDMAN, M., ACHORN,
B., BECKET, T., DOUVILLE, B., PREVOST, S., and STONE, M. 1994.
Animated conversation: Rule-based generation of facial expression,
gesture and spoken intonation for multiple conversational agents. In
Proceedings of SIGGRAPH '94, ACM Press, New York, 413-420.

CHITTARO L., and CORVAGLIA D. 2003. 3D Virtual Clothing: from
Garment Design to Web3D Visualization and Simulation. In
Proceedings of Web3D 2003: 8th International Conference on 3D
Web Technology, ACM Press, New York, 73-84.

CHITTARO, L., IERONUTTI, L., and RANON, R. 2004. Navigating 3D
Virtual Environments by Following Embodied Agents: a Proposal
and its Informal Evaluation on a Virtual Museum Application.
Psychnology Journal (Special issue on Human-Computer
Interaction), 2(1), 24-42.

CHITTARO L., RANON R., and IERONUTTI L. 2003. Guiding Visitors of
Web3D Worlds through Automatically Generated Tours. In
Proceedings of Web3D 2003: 8th International Conference on 3D
Web Technology, ACM Press, New York,.27-38.

CHITTARO L., and SERRA M. 2004. Behavioral Programming of
Autonomous Characters based on Probabilistic Automata and
Personality. Journal of Computer Animation and Virtual Worlds, 15
(3-4), 319-326.

CHUNG, S., and HAHN, J. K. 1999. Animation of Human Walking in
Virtual Environments. In Proceedings of Computer Animation,
IEEE Computer Society Press, 4-15.

DE LOPE, J., GONZÁLEZ-CAREAGA, R., ZARRAONANDIA, T., and
MARAVALL, D. 2003. Inverse Kinematics for Humanoid Robots
Using Artificial Neural Networks. In Proceedings of EUROCAST:

8th International Conference on Computer Aided Systems Theory,
Springer-Verlag, Berlin, 448-459.

FUNGE, J., TU, X., and TERZOPOULOS, D. 1999. Cognitive Modeling:
Knowledge, Reasoning, and Planning for Intelligent Characters. In
Proceedings of SIGGRAPH '99, ACM Press, New York, 29-38.

H-ANIM WEB SITE. www.h-anim.org (last access on January 2004).

HUANG, Z., BOULIC, R., MAGNENAT-THALMANN, N., and
THALMANN., D. 1995. A Multi-Sensor Approach for Grasping and
3D Interaction. In Proceedings of CGI ’95, Academic Press, 235-
253.

IERONUTTI L., RANON R., and CHITTARO L. 2004. Automatic
Derivation of Electronic Maps from X3D/VRML Worlds. In
Proceedings of Web3D 2004: 9th International Conference on 3D
Web Technology, ACM Press, New York, 61-70.

JESS WEB SITE. http://herzberg.ca.sandia.gov/jess/ (last access on
January 2004).

LATOMBE, J-C. 1991. Robot Motion Planning, Kluwer.

LEE, Y., TERZOPOULOS, D., and WATERS, K. 1995. Realistic Face
Modeling for Animation. In Proceedings of SIGGRAPH ’95, ACM
Press, New York, 55-62.

LUCAS S. R., TISCHLER C. R., and SAMUEL A. E. 2000. Real-Time
Solution of the Inverse Kinematic-Rate Problem. International
Journal of Robotics Research, vol. 19, no. 12, 1236-1244.

MIKK, E., LAKHNECH, Y., and SIEGEL, M. 1997. Hierarchical
Automata as Model for Statecharts. In Proceedings of ASIAN ’97:
3rd Asian Computer Science Conference, LNCS 1345, Springer-
Verlag, Berlin, 181-196.

PANDZIC, I.S., CAPIN, T.S., LEE, E., MAGNENAT-THALAMANN, N.,
and THALMANN, D. 1998. Autonomous Actors in Networked
Collaborative Virtual Environments. In Proceedings of MultiMedia
Modeling '98, IEEE Computer Society Press, 138-145.

PERLIN K., and GOLDBERG, A. 1996. Improv: A system for scripting
interactive actors in virtual worlds. In Proceedings of SIGGRAPH
’96, ACM Press, New York, 205-216.

PONDER, M., PAPAGIANNAKIS, G., MOLET, T., MAGNENAT-
THALMANN, N., and THALMANN, D. 2003. VHD++ Development
Framework: Towards Extendible, Component Based VR/AR
Simulation Engine Featuring Advanced Virtual Character
Technologies. Proceedings of CGI’03, IEEE Computer Society
Press, 96-104.

RICKEL, J., and JOHNSON, W. L. 1999. Animated Agents for
Procedural Training in Virtual Reality: Perception, Cognition, and
Motor Control. Applied Artificial Intelligence 13, 343-382.

TRAUM, D., and RICKEL, J. 2002. Embodied agents for multi-party
dialogue in immersive virtual worlds. In Proceedings of the first
international joint conference on Autonomous agents and
multiagent systems, ACM Press, New York, 766-773.

VHML WEB SITE. http://www.vhml.org/ (last access on January
2004).

VOSINAKIS, S., and PANAYIOTOPOULOS, T. 2001. SimHuman: A
Platform for Real-Time Virtual Agents with Planning capabilities.
In Proceedings of IVA ’01 : 3rd International Workshop on
Intelligent Virtual Agents, Springer-Verlag, Berlin, 210-223.

