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Abstract 
Virtual humans are being increasingly used in different domains. 
Virtual human modeling requires to consider aspects belonging to 
different levels of abstractions. For example, at lower levels, one 
has to consider aspects concerning the geometric definition of the 
virtual human model and appearance while, at higher levels, one 
should be able to define how the virtual human behaves into an 
environment. H-Anim, the standard for representing humanoids in 
X3D/VRML worlds, is mainly concerned with low-level 
modeling aspects. As a result, the developer has to face the 
problem of defining the virtual human behavior and translating it 
into lower levels (e.g. geometrical and kinematic aspects). In this 
paper, we propose VHA (Virtual Human Architecture), a software 
architecture that allows one to easily manage an interactive H-
Anim virtual human into X3D/VRML worlds. The proposed 
solution allows the developer to focus mainly on high-level 
aspects of the modeling process, such as the definition of the 
virtual human behavior. 
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Techniques -- Interaction techniques. I.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism --  Virtual reality. H.5.1 
[Information Interfaces and Presentation]: Multimedia 
Information Systems -- Artificial, augmented, and virtual realities. 
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1. Introduction 
Virtual humans, i.e. three-dimensional simulations of human 
beings, are being increasingly used in different domains. For 
example, they are used to explain physical and procedural human 
tasks [Badler et al. 2002; Rickel and Johnson 1999], they are 
employed in military applications [Traum and Rickel 2002], in 
ergonomics [Badler 1997], to simulate emergencies in first aid 
[Cassell et al. 1994], and as virtual guides [Chittaro et al. 2003; 
2004]. 
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Proper development of virtual humans requires knowledge of 
different disciplines, such as computational geometry, kinematics, 
artificial intelligence, computer graphics, and bio-mechanics. The 
complexity of building virtual humans encourages to divide the 
problem in several sub-problems; this can be done with the five-
levels hierarchy proposed by [Funge et al. 1999], shown in Figure 
1. 

 
Figure 1. The modeling hierarchy proposed by [Funge et al. 

1999]. 

The lowest layer of the modeling hierarchy is the geometric layer 
that concerns the definition of the virtual human model and its 
appearance. At the kinematic layer, the virtual human is 
represented as a set of rigid bodies, called segments, hierarchically 
organized and connected by joints. From this point of view, an 
animation can be defined in two ways: by specifying joints 
rotations, or by defining (or automatically computing) positions of 
specific parts of the virtual human body (called end-effectors) in 
time. The latter approach uses inverse kinematics to compute the 
joints configuration (in terms of rotation values) needed to put 
end-effectors in particular positions; this approach is commonly 
used to control hands and feet movements. At the physical layer, 
the animation is obtained by applying physical laws to different 
parts of the virtual human body to compute complex animations, 
such as skin deformation or hair movement. The behavioral layer 
represents the instinctive behavior of the virtual human (e.g. in 
terms of stimulus-action associations), while the highest layer, the 
cognitive one, binds various stimuli with reasoning processes that 
allow the virtual human to search for the most suitable action. 
Cognitive models go beyond behavioral models in that they 
govern what the virtual human knows, how that knowledge is 
acquired, and how it can be used to plan actions.  
H-Anim [2004], the standard for representing humanoids in 
X3D/VRML worlds, deals only with lower layers of the modeling 
hierarchy. The standard defines the hierarchical structure of the 
virtual human in terms of Segment and Joint nodes, it defines 



the Site node to identify locations of semantic interest on the 
virtual human body (e.g. they can be used by inverse kinematics 
systems), and it uses the Displacer node to specify a particular 
mesh deformation (e.g. it can be used to produce facial 
expressions). On the other hand, H-Anim does not specify neither 
how to define the virtual human behavior nor how the different 
layers can be integrated.  
As a result, when the developer wants to include an interactive 
virtual human into a X3D/VRML world, she has to write a 
considerable amount of code that is related to the different layers 
of the hierarchy. Moreover, most of this ad-hoc work has to be 
rethought if the developer needs to integrate the virtual human 
into another application. Therefore, the implementation of virtual 
humans is an inefficient and partly undisciplined activity for the 
developer.  
In this paper, we present VHA (Virtual Human Architecture), a 
software architecture that allows one to develop interactive H-
Anim virtual humans by clearly separating the geometrical, 
kinematic, physical and behavioral layers of the modeling 
hierarchy. The goal of our work is twofold. First, we intend to 
study a possible solution to overcome some modeling problems of 
H-Anim virtual humans. Second, we intend to propose an 
architecture that, although less sophisticated than other 
architectures, can be easily run on the Web using common PCs. 
This paper is structured as follows. First, in Section 2, we discuss 
related work. Then, in Section 3, we describe the software 
architecture we propose. In Section 4, we illustrate some 
implementation choices we have taken for implementing the 
architecture. Section 5 outlines two case studies we used for 
testing our solution. Finally, in Section 6, we discuss the current 
limitations and future developments of the proposed architecture. 

2. Related Work 
Simulating human motion and behavior using a computer is an 
active research area (see, e.g. [Ponder et al. 2003; Badler et al. 
2002]) and different approaches have been proposed in literature. 
Each approach considers the appearance, function and autonomy 
of the virtual human with respect to specific levels of detail and 
accuracy, and given application areas. 
A commercial system that comprises many aspects of human 
motion and simulation is Jack [Badler et al. 1993], an interactive 
system for the definition, manipulation, animation, and 
performance analysis of virtual humans. Jack is suitable for 
ergonomics applications and contains kinematic and dynamic 
models of humans to simulate complex behaviors, such as 
balance, grasping and walking. A similar system is HUMANOID 
[Boulic et al. 1995], which includes modules to compute 
deformations of the skin, hand and face of the virtual human. 
VLNET [Pandzic et al. 1998] is a networked multi-user virtual 
environment that uses the HUMANOID articulated body model as 
a basis for virtual human display and motion.  
Another interesting system is STEVE (Soar Training Expert for 
Virtual Environments) [Rickel and Johnson 1999]: STEVE can 
demonstrate skills to students, answer student questions, watch 
the students as they perform the tasks, and give advice if the 
students run into difficulties. However, the complex 
functionalities provided by STEVE require to run different 
modules of the system in parallel as separate processes, possibly 
on different computers.  
Some systems allow one to define the behavior of virtual humans 
through scripting languages. In this context, an interesting system 
is Improv [Perlin and Goldberg 1996] that represents each virtual 
human behavior as a set of rules that specify how the virtual 

human communicates and takes decisions. However, Improv is 
more suitable for interactive storytelling rather than virtual 
environments. Another interesting system is SimHuman 
[Vosinakis and Panayiotopoulos 2001]: it simulates virtual 
humans with planning capabilities and is devoted to support real-
time applications, taking into account requirements of natural 
looking motion and acceptable execution speed. 
Another interesting system is VHD++ [Ponder et al. 2003], a real-
time software framework (written in C++) for developing virtual 
and augmented reality applications employing advanced virtual 
character simulation technologies.  In particular, VHD++ is an 
efficient, flexible and extendible framework based on modern 3D 
game-engine design principles. VHD++ can be employed in a 
large number of different scenarios; it has been used i) in 
simulations of cultural heritage involving architecture, acoustics 
and cloths, ii) in augmented reality applications for maintenance 
training, iii) in edutainment systems based on storytelling and iv) 
in immersive applications designed to train non-professional 
health emergency operators. 

3. The Proposed Virtual Human Architecture 
VHA (Virtual Human Architecture) is a software architecture that 
allows one to develop interactive H-Anim virtual humans by 
clearly separating the geometrical, kinematic, physical and 
behavioral layers of the modeling hierarchy. In particular, VHA 
allows one to implement virtual humans whose behavior is based 
on the Sense-Decide-Act paradigm; the virtual human is able to 
perceive what happens in the surrounding environment (sense 
process), to decide a proper reaction (decide process) and to 
perform the related actions in the Web3D world (act process).  
The main features of VHA are the following. First, the 
architecture is general, since it does not depend from a specific 
virtual human application and 3D world. 
Second, it finds a good compromise between the required realism 
of the representation (at each level of the modeling hierarchy) and 
the efficiency of the simulation (the simulation has to be run in 
real-time on common PCs). 
Third, unlike all systems described in Section 2, the VHA 
supports execution on the Web, since it is completely based on 
Web standards, such as X3D/VRML, H-Anim and Java. 
To integrate an interactive H-Anim virtual human into a virtual 
environment, the VHA uses the following data: i) specification of 
how the virtual human should react to users’ actions, ii) the virtual 
environment topology (e.g. navigable areas), iii) information 
about objects (e.g. position and geometry of an object), iv) a set of 
virtual human animations and v) the H-Anim model of the virtual 
human.   
The main internal modules of the architecture (depicted in Figure 
2) are the Behavioral Engine, the Execution Engine and the 
Presentation Module. The Behavioral Engine refers to the 
Behavioral layer of the modeling hierarchy (the sense and decide 
processes), the Execution Engine deals with the kinematic, 
physical and geometric layers (the act process), while the 
Presentation module is used by the system for presenting 
textual/vocal information to the user. 
The Behavioral Engine senses user’s actions and identifies the set 
of high-level actions the virtual human has to perform in response. 
These actions are sent to the Execution Engine, which both 
identifies the animations the virtual human has to perform and 
retrieves information to be provided to the user. Information is 
sent to the Presentation Module that transforms the textual data in 
a format suitable for the presentation. 



 
Figure 2. The proposed Virtual Human Architecture. 

In the following sections, we describe each module of the 
proposed architecture in more detail. 

3.1 The Behavioral Engine 
The Behavioral Engine senses environment events and determines 
the proper virtual human actions. Environment events are stored 
into an internal buffer (called Events Buffer). The Behavioral 
Engine defines how the virtual human behavior in terms of Finite-
State Machines (FSMs). In particular, FSMs allow the developer 
to specify how the virtual human behaves, given its current 
internal state and by considering events stored into the Events 
Buffer. 
A FSM is represented by a directed graph G = (V, E), where V 
represents a set of nodes ni, and E represents a set of oriented 
edges (ni, nj). Each node corresponds to a particular state of the 
virtual human, while each edge corresponds to a transition that 
allows the virtual human to change its internal state. 
Conventionally the node n0 represents the initial state, and nodes 
that do not have outgoing edges are called end states.  

Each transition (ni, nj) is characterized by conditions-actions (cij, 
aij) pairs: cij is the set of conditions that determine the 
applicability of the transition, while aij is the set of actions 
(animation performed and information presented) the virtual 
human has to execute if the corresponding transition is activated. 
Figure 3 shows a FSM that describes a very simple virtual human 
behavior. The FSM is represented by three states (n0, n1 and n2) 
and four transitions ((n0, n1), (n0, n2), (n2, n2) and  (n2, n1)), each 
one characterized by one conditions-actions (cij, aij) pair. 
The correspondent virtual human behavior is the following. If 
both the user and the virtual human are close to an object called 
object_1 (c01), the virtual human presents the object (a01). On 
the other hand, if they are far from the object (c02), the virtual 
human firstly invites the user to follow it, and then it walks to the 
object (a02). The virtual human waits (a22) until the user is close 
enough to the object (c22); when this happens, i.e. the user is near 
the object (c21), the virtual human presents it (a21). 

 
Figure 3. An example of a simple Finite-State Machine (FSM). 



 

Figure 4. An example of a Hierarchical-State Machine (HSM) 

A transition (ni, nj) can be activated by the Behavioral Engine if 
and only if all corresponding conditions cij are satisfied; a single 
condition of cij is considered satisfied when it matches with an 
event stored into the Events Buffer. Conditions can concern 
events generated by explicit user actions (e.g. an object has been 
touched by the user), they can refer to spatial relations (e.g. the 
user is close to the virtual human) or temporal conditions (e.g. 
the user does not interact with any object for some time). The 
decision process is activated whenever all actions of the 
previously activated transition have been executed by the 
system; in other words, in our model the execution of a set of 
actions aij is not interruptible. 
Once a transition (ni, nj) is activated, the Behavioral Engine 
deletes all events stored into the Events Buffer, sends to the 
Execution Engine the list of actions aij, and then starts to sense 
new events. 
VHA allows one to describe complex virtual human behavior 
through Hierarchical-State Machines (HSMs), i.e. hierarchical 
compositions of FSMs. Each graph node can be either a basic 
state (i.e. it belongs to V) or a state that contains the description 
of a particular behavior (represented through a HSM itself). In 
our system, a transition can be activated if and only if the current 
virtual human state is an end state belonging to the underlying 
level (e.g. in Figure 4 the transition (n1, n2) can be activated if 
the current virtual human state is n11). The hierarchy is multi-
level, since each HSM can contain nodes that do not represent 
basic states. For a formal treatment of HSMs, readers can refer 
e.g. to Mikk [Mikk et al. 1997]. 
Figure 4 shows the typical structure of a HSM; in this example, 
the HSM is composed by two levels and represents a simple 
virtual guide behavior (e.g. the virtual human leads the user 
through the environment by presenting sequentially two objects). 
The top layer is composed by three nodes (n0, n1 and n2) and 
represents the high-level description of the virtual guide 
behavior. In particular, node n0 represents the initial state of the 
virtual guide, while n1 and n2 correspond to the presentation of 
two different objects. The lower level is represented by two 
HSMs corresponding to descriptions of more specific virtual 
guide behaviors. For example, the developer can place into the 
node n1 the FSM depicted in Figure 3 to describe the particular 
virtual human behavior corresponding to object_1 
presentation.  
Given a current state of the virtual human, the Behavioral 
Engine senses environment events, determines what conditions 
are satisfied, identifies applicable transitions, activates one of 
them and sends to the Execution Engine the ordered list of 
actions associated with the chosen transition. Actions 

correspond to animations that the virtual human has to perform 
and information that has to be presented to the user. 

3.2 The Execution Engine 
To define an animation for H-Anim virtual humans, the 
developer has to specify different joint rotation values over time; 
the resulting virtual human motion is generated by smoothly 
interpolating specified rotation values. Similarly, to define a 
mesh deformation (e.g. the skin of the virtual human face is 
modified to obtain a facial expression), she has to specify 
different positions of mesh vertexes over time; the resulting 
deformation is obtained by interpolating specified position 
values. This kind of animations are called pre-stored 
animations, since the complete description of the movement has 
to be specified in advance. 
Another kind of animation, called parametrized animations, is 
more convenient to animate a virtual human. Parametrized 
animations are more general and flexible than pre-stored ones, 
since they allow one to generate a variety of movements only by 
changing a small set of animation parameters. Parametrized 
animations are usually based on inverse kinematics to control 
end-effectors movements (e.g. virtual human feet and hands) and 
employ path planning algorithms to generate collision-free 
motions. 
The Execution Engine is able both to use pre-stored animations 
(e.g. recorded by using Motion Capture devices) and to run 
parametrized animations at execution-time. Each parametrized 
animation is represented by an animation model that describes 
how the animation is generated starting from a set of given 
parameters. An animation model can use information on the 
topology of the environment (e.g. areas that can be traveled by 
the virtual human), object information (e.g. object position and 
geometry) and parameters explicitly given by the developer (e.g. 
a command (walkTo coord 5 2 4) ) to generate the virtual 
human animation. 

3.3 The  Presentation Module 
The Presentation Module allows the virtual human to present 
textual information to the user. The required information can be 
shown on a 2D On-Screen Display (OSD) into the virtual 
environment (Figure 5) and/or presented by using a synthesized 
voice. 
The Presentation Module can format the given textual 
information to adapt the visualization according to the display 
dimension and, at the same time, can control the synthesized 
voice volume by taking into account the distance between the 
virtual human and the user.   



 

 
Figure 5. A textual information displayed on the OSD. 

4. VHA Implementation 
In this Section, we provide some implementation details such as 
the models used for generating parametrized animations and the 
algorithms employed for the Path Planning, the Inverse 
Kinematics, the Physically-based Simulation and the Collision 
Detection modules (shown in Figure 2). Obviously, different 
approaches could be followed to implement the same modules 
without changing the general architecture.  

Our implementation choices are described in the following 
Section, while in Section 4.2 we present how we integrate VHA 
into a generic VRML environment.  

4.1 Animation models 
The Execution Engine we implemented contains different 
animation models, but the most relevant ones are the grasp 
model, the walk model, and the model that allows the virtual 
human to perform facial expressions (Figure 6 shows examples 
of animations produced by the three models). Animation models 
use pre-stored data, the Inverse Kinematics, the Path Planning, 
the Collision Detection and the Physically-based simulation 
modules to generate the motion.  

The grasp model we implemented employs the Multi-sensor 
approach [Huang et al. 1995] to simplify the collision-detection 
algorithm. This technique hangs spherical sensors to the 
articulated figure and activates each sensor for any collision 
(detected by the Collision Detection module) with other objects 
or sensors. The Inverse Kinematics module is used by the grasp 
model to compute joint rotation values suitable to place the 
virtual human hands in the required positions. 

The walk model we implemented allows the virtual human to 
walk on both even and uneven terrains. The walk model 
combines the automatic generation of human walking motion 
(based on the model proposed by [Chung and Hahn 1999]) with 
trajectory information (automatically derived by the 
implemented Path Planning module). In particular, the walk 
model first uses both the trajectory information and the data 
representing the walking surface topology to derive foot and 
pelvis trajectories. Then, it employs the Inverse Kinematics 
module to compute proper joint rotation values for the virtual 
human legs. Finally, the walk model employs generic pre-stored 
data to animate the upper part of the virtual human body. 

 
Figure 6. Example of parametrized animations supported by 

VHA: a) grasping, b) walking on uneven surfaces and c) facial 
expressions. 

The animation model for facial expressions employs the muscle-
based approach [Lee et al. 1995] that controls facial expressions 
by acting on muscle contractions. In particular, the model we 
implemented represents the virtual human face as a deformable 
multi-layered mesh; nodes of the mesh are considered mass 
elements connected by spring elements. Nodes are arranged in 
three layers: the top layer represents the epidermis, the middle 
layer represents the tissue, and the bottom layer represents the 
skull surface. The elements between the top and middle layers 
represent the fatty tissues, while the elements between the 
middle and bottom layer represent the facial muscles. The mesh 
is driven by modeling the activation and motion of several facial 
muscles in various facial expressions. The Physically-based 
Simulation module is used to simulate the skin behavior. 
In the following, we give an overview of the techniques we 
employed for implementing the Path Planning, the Inverse 
Kinematics and the Physically-based Simulation modules.  
Path Planning. Many algorithms have been proposed for path 
planning (a good survey of classical methods is presented in 
[Latombe 1991]). The approach we implemented for the Path 
Planning module captures the topology of the configuration 
space (i.e. collision-free positions) by representing it into a 
graph structure. The Path Planning technique we use is an 
extended version of the approach we presented in [Chittaro et al. 
2003]. This new version computes a collision-free path also in 
multi-floor environments. Each floor of the virtual environment 
is represented as an Occupancy Grid, a two dimensional matrix 
such that: (i) each cell of the matrix corresponds to an area of the 
floor and, (ii) the value of the cell indicates whether the 
corresponding area contains a geometry or not. The Path 
Planning module derives from the Occupancy Grids a graph that 
captures the topology of the environment. This structure allows 
the Path Planning module to compute collision-free paths by 
employing a traditional searching algorithm (e.g. Dijkstra or 
A*). To automatically derive Occupancy Grids starting from a 
X3D/VRML world, we employ the technique we proposed in 
[Ieronutti et al. 2004]. The basic idea of this technique is to 
determine whether a cell of the floor should indicate the 
presence of geometry that prevents navigation, by checking if 
the corresponding area in the world can be traveled by an avatar 
created for the purpose. 
Inverse Kinematics. Inverse kinematics can use different 
methods to solve the problem of finding the joints configuration 



that allows the end-effector to reach the desired position. Two 
main categories of solutions can be identified in the literature: 
closed form solutions and numerical solutions [Lucas et al. 
2000]. The first category of approaches analytically computes a 
solution by using non-iterative calculations. In general, these 
systems employ algebraic and geometric techniques to compute 
a solution quickly and precisely. On the other hand, it is better to 
choose numerical solutions when the system is too complicated 
for the closed form methods; numerical solutions use iterative 
calculations to approach a solution as closely as possible, 
requiring a longer time. However, this type of approaches can 
solve also very complex kinematic systems. An alternative 
technique, based on neural networks, has been proposed to solve 
inverse kinematic systems [de Lope et al. 2003]. The Inverse 
Kinematics module we implemented belongs to the first 
category of solutions; it solves the problem of moving limbs 
composed of two segments in a three-dimensional space. 
Physically-based Simulation. The Physically-based simulation 
module we implemented allows VHA to simulate elastic 
surfaces through a mass-spring system. The dynamic behavior of 
a surface is computed by numerically integrating positions and 
velocities of mass elements over time. The computation cost of 
the simulation is mainly due to numerical integration of the 
ordinary differential equation systems that model the deformable 
surface. The simulation engine we employ has been described in 
detail in [Chittaro and Corvaglia 2003] and implements three 
explicit integration methods, while implicit methods have not 
been considered (to limit simulation complexity). 

4.2 VRML nodes introduced for using VHA 
From a VRML point of view, VHA is seen as a PROTO (row 1 
in the listed code below). Whenever the developer intends to 
include the VHA into a virtual environment, she has to 
instantiate the VHA node by specifying the virtual human 
behavior (row 3), environment information (row 4), object 
information (row 5), the set of pre-stored animations the virtual 
human is able to perform (row 6) and the H-Anim model 
representing the virtual human (row 7).   
VHA senses environment events (e.g. the user interacts with a 
TouchSensor node) through the VeEvent eventIn (row 2). 
The developer can choose arbitrarily the syntax used for 
representing environment events, provided that she follows the 
same syntax in the HSMs conditions.  
In particular, the behaviors, objects and animations of 
the VHA fields contain respectively a list of Behavior, 
Object and Animation nodes. Moreover, the first element 
of the behaviors field represents the top layer of the HSM, 
while the other elements (representing HSMs belonging to lower 
layers) are loaded only when needed by using a command 
(import behavior behavior_Name). 
 

1. PROTO VHA [ 
2.   eventIn SFString VeEvent 
3.   exposedField MFNode behaviors []  
4.   exposedField SFNode environment 

Environment{}  
5.   exposedField MFNode objects [] 
6.   exposedField MFNode animations []  
7.   exposedField SFNode humanoid Humanoid{} 
8. ]{… } 
 

In the following sections, we describe the VRML PROTOs 
introduced for integrating the VHA into VRML words, by 
presenting their interfaces. 

4.2.1 Behavior node 
Each virtual human behavior is represented by a Behavior 
PROTO (row 9). The node is characterized by the name of the 
behavior (row 10) and contains information on HSM transitions 
(row 11); each transition (row 13) is characterized  by a set of 
conditions (row 14) and actions (row 15), both represented by 
using a string array. Each single string represents a different 
condition or action, while empty spaces are used to separate 
different parameters.  
 

9. PROTO Behavior [ 
10.   exposedField SFString name ""   
11.   exposedField MFNode transitions [] 
12. ]{ } 
 
13. PROTO Transition [ 
14.   exposedField MFString conditions "" 
15.   exposedField MFString actions "" 
16. ]{ } 
 

4.2.2 Environment node 
The Environment PROTO (row 17) stores information on the 
topology of the environment; the VHA uses this information to 
control virtual human movements through multi-floor virtual 
environments. 
In particular, the Environment PROTO is characterized by the 
address of the file containing the virtual environment (row 18), 
the set of parameters used for deriving obstacles information 
(rows 19-23), floor information (row 24) and information on the 
stairs connecting different floors (row 25). xLen, zLen, 
accuracy, xPos and zPos (rows 19-23) represent parameters 
used for the automatic derivation of the occupancyGrid (see 
[Ieronutti et al. 2004] for the precise meaning of these 
parameters). The floors (row 24) and stairs (row 25) fields 
of the Environment node contains respectively a list of Floor 
and Stair nodes. 
 

17. PROTO Environment [ 
18.   exposedField SFString url "" 
19.   exposedField SFInt32 xLen 0 
20.   exposedField SFInt32 zLen 0 
21.   exposedField SFInt32 accuracy 1 
22.   exposedField SFInt32 xPos 
23.   exposedField SFInt32 zPos 
24.   exposedField MFNode  floors [ ] 
25.   exposedField MFNode  stairs [ ] 
26. ]{ } 
 

The Floor PROTO (row 27) contains information on the surface 
on which the virtual human has to walk; this information is 
represented by a pair of two-dimensional matrices, the 
occupancyGrid (row 28) and the heightGrid (row 29). The 
occupancyGrid  corresponds to the Occupancy Grid described 
in Section 4.1; this information is represented as a string in 
which the empty character and the character ‘X’ are used for 
identifying respectively travelable areas and areas that contain 
an obstacle to the virtual human navigation. The heightGrid 



is a matrix having the same dimensions of the occupancyGrid, 
but in which the value of each cell specifies the height of the 
surface above the corresponding area (like the field height of 
the X3D/VRML ElevationGrid  node). If the floor surface is 
completely flat, the heightGrid can be represented by an 
integer that specify the vertical position of the floor surface with 
respect to the absolute coordinate system.  
 

27. PROTO Floor [ 
28.   exposedField SFString occupancyGrid "" 
29.   exposedField MFFloat heightGrid 0 
30. ]{ } 
 

Different floors can be connected by stairs (row 31); each stair is 
defined by its position (row 32) and by a pair of integers that 
specifies which floors the stair connects (floorL stands for 
lower floor while floorU  stands for upper floor, rows 33-34). 
The other three parameters (rows 35-37) define other 
characteristics of the stair; the first one represents the number of 
steps of the stair and the other two parameters represents 
respectively the height and the length of a single step.   
 
31. PROTO Stair [ 
32.   exposedField SFVec3f position 0 0 0   
33.   exposedField SFInt32 floorL 0 
34.   exposedField SFInt32 floorU 0 
35.   exposedField SFInt32 numSteps 0           
36.   exposedField SFFloat stepHeight 0 
37.   exposedField SFFloat stepLength 0 
38. ]{ } 
 

4.2.3 Object node 
Object information is represented by the Object PROTO (row 
39). In particular, the node specifies the name of the object (row 
40), its position and orientation (rows 41-42), textual 
information (row 43) and the definition of the object geometry 
(row 44).  
VHA uses object names for identification purposes; this way, 
actions can use the name of an object as a parameter (e.g. goTo 
object printer). The object position and orientation are used 
both to position the object into the virtual environment and to 
identify a position of semantic interest (e.g. the above parameter 
printer is automatically associated to the corresponding 
position). We have included in Object node the description 
field since in several contexts it can be useful to associate textual 
information to different objects e.g. the description of an object 
can be presented by the virtual human by simply using  the 
action (describe object_Name). 
 

39. PROTO Object [ 
40.   exposedField SFString name "" 
41.   exposedField SFVec3f position 0 0 0 
42.   exposedField SFRotation orientation 0 1 0 0 
43.   exposedField SFString description "" 
44.   field MFNode shape NULL 
45. ]{ } 
 

4.2.4 Animation node  
The VHA supports both pre-stored animations and parametrized 
ones. Pre-stored animations are represented through the 

Animation PROTO (row 46). A pre-stored animation is 
characterized by its name (row 47), duration (row 48), the 
number of times the animation has to be repeated (row 49) and 
the Interpolators node (row 50). The Interpolators 
PROTO (row 54) specifies both the key and keyValue fields for 
a list of OrientationInterpolators, each one related to a 
different (H-Anim) joint involved in the motion (the PROTO 
includes a field for each H-Anim joint). 

The Animation node we implemented provides the possibility 
to organize different animations in groups; each animation can 
belong to a group of animations, whose name is defined by the 
field group (row 52). The probability field (row 53) 
represents the probability the animation is chosen by the 
Execution Engine when it needs to retrieve an animation 
belonging to a specific group. 
 
46. PROTO Animation [ 
47.   exposedField SFString name "" 
48.   exposedField SFTime duration 0 
49.   exposedField SFInt32 loop 1 
50.   exposedField SFNode  interpolators 
51.                              Interpolators{} 
52.   exposedField SFString group "" 
53.   exposedField SFFloat probability 1 
54. ]{ } 
 
55. PROTO Interpolators [ 
56.   exposedField MFVec3f HumanoidRoot_KV [] 
57.   exposedField MFFloat HumanoidRoot_K [] 
58.   exposedField MFVec3f Sacroiliac_KV []  
59.   exposedField MFVec3f … 
      … 
60. ]{ } 
 

The organization into groups of animations allows the system to 
improve the variety of the virtual human motion. For example, 
suppose that the developer has defined several waiting 
animations (e.g. the virtual human looks around, scratches its 
head, breaths, …) and the virtual human is waiting for user 
action. The system is able to automatically retrieve a waiting 
animation by considering the probability associated to each 
single animation that belongs to the required group (e.g. it is 
more probable that the virtual human breaths rather than 
scratching its head). Moreover, given a wide number of pre-
stored animations, this approach allows the developer to modify 
how the virtual human behaves only by changing the 
probability value of different animations.  

4.2.5 Presentation node 
The Presentation PROTO (row 61) implements the 
Presentation Module (described in Section 3.3); in particular, the 
node is used by VHA for presenting information to the user. 
Through the Presentation node, textual information is at the 
same time displayed on a OSD and presented by using a 
synthesized voice (e.g. by using Microsoft TTs engine).  
The implemented OSD follows the user, and then requires the 
position and orientation of the user (rows 62-63) to update its 
position during user’s movements. Given the text to be 
displayed (row 64),  the node adapts the corresponding string 
visualization according to the display dimension (defined in 
rows 66-67).  



 

61. PROTO Presentation [ 
62.  eventIn SFVec3f  userPosition 
63.  eventIn SFRotation userRotation 
64.  eventIn SFString text 
65.  eventIn SFFloat distance 
66.  field SFFloat xDim 
67.  field SFFloat yDim 
68. ]{…} 
 
To present information by using a synthesized voice, the  
Presentation PROTO sends to a JavaScript (inserted into an 
hidden HTML frame) the text that has to be spoken (row 64). 
Moreover, given the distance between the user and the virtual 
human (row 65), the Presentation PROTO controls the 
synthesized voice volume. 

5. Case Studies 
The proposed architecture can be easily integrated into a generic 
X3D/VRML world. To test the effectiveness of VHA, we 
considered two different case studies. First, we employed a 
virtual human into a 3D Computer Science museum based on a 
VRML world representing a data processing center of the 70’s 
(see Figure 7). Second, we used the same virtual human as a 
guide into an architectural virtual reconstruction of cultural 
heritage (see Figure 8). Although the considered Web3D sites 
differ in purpose and content, only a few minor modifications 
(e.g. the description of the virtual human behavior and 
environment information) have been necessary to move from the 
first to the second application.  
 

 

 
Figure 7. The virtual human explaining the functioning of the 

card punch in the Computer Science museum. 

While in the first environment the virtual human is able to 
provide technical information by demonstrating how different 
devices worked, in the second application the same virtual 
human is used to tell the story of different buildings and 
highlight the main architectural differences. 
In particular, for the first application, we have defined different 
HSM corresponding to different virtual human behaviors, each 
one designed to highlight a different aspect of the Computer 
Science museum (e.g. an high-level introduction to the overall 
environment, an explanation of the hardware architecture, a 
description of work activities). The user, according to her 
personal interests and needs, can choose (and change during the 
visit) the topics the virtual human has to explain. 
 

 
Figure 8. The virtual human providing architectural information. 

Recently we have evaluated the positive effects of using virtual 
humans in the context of virtual museums and in making a 
virtual place more lively and attractive for users [Chittaro et al 
2004]. As a navigation aid, the virtual human proved to be 
appreciated in the evaluation; it was mostly rated as simple to 
use, and it had the advantage of being unobtrusive for the expert 
user. Moreover, using the virtual human demanded a very short 
learning time, probably because, from a human-computer 
interaction point of view, the virtual human metaphor has the 
advantage of being consistent with the real-world experience of 
users. On the other hand, by analyzing the most frequent 
concerns expressed by subjects, there is a clear need for 
personalization capabilities. For example, walking and talking 
speed of the virtual human were both rated too slow or too fast 
by some users: the ideal solution would be to adapt these 
features on the basis of each single user's preference. 

6. Conclusions 
This paper proposed VHA, an architecture that integrates the 
kinematic, physical and behavioral aspects to control H-Anim 
virtual humans. The proposed solution, fully compatible with 
Web standards, allows the developer to easily augment 
X3D/VRML worlds with interactive H-Anim virtual humans 
whose behavior is based on the Sense-Decide-Act paradigm 
(represented through HSMs). 
With respect to future goals of this project, we plan to extend 
VHA in order to support more than one H-Anim virtual human 
at the same time, and allowing virtual humans to interact with 
each other. Moreover, we intend to improve the capability of 
generating parametrized animations. From this point of view, we 
intend to integrate into the architecture two additional modules: 
a module to synchronize lip movements with spoken information 
and one to consider reachability problems for the generation of 
the grasping movement. Furthermore, since the time required for 
describing complex virtual human behavior (e.g. when the HSM 
is represented by more than 30 states) can be considerable, we 
plan to develop an authoring tool that allows the Web3D content 
creator to define the virtual human behavior either through a 
graphical user interface or by employing a more abstract 
programming language (e.g.  by using the Virtual Human 
Markup Language [VHML 2004]).  
Finally, we plan to develop the cognitive layer into the proposed 
architecture; reasoning processes should allow to control what 



the virtual human knows, how that knowledge is acquired, and 
how it can be used both to plan actions and to generate virtual 
human emotions. In this context, we have separately studied 
[Chittaro and Serra 2004] a system for modeling personality 
aspects into H-Anim virtual humans. To develop a Cognitive 
Module for VHA, we have started using the Java Expert System 
Shell [Jess 2004], that allows us to simulate reasoning processes 
by employing a knowledge base and a set of declarative rules.  
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