
Rendering of X3D Content on Mobile Devices with OpenGL ES

Daniele Nadalutti∗

HCI Lab

Dept. of Math and Computer Science

University of Udine

via delle Scienze, 206

33100 Udine, Italy

Luca Chittaro†

HCI Lab

Dept. of Math and Computer Science

University of Udine

via delle Scienze, 206

33100 Udine, Italy

Fabio Buttussi‡

HCI Lab

Dept. of Math and Computer Science

University of Udine

via delle Scienze, 206

33100 Udine, Italy

Abstract

The availability of more powerful mobile devices, sometimes
equipped with graphics accelerators, is making it easier to
experiment with mobile 3D graphics. In this paper, we exploit
the main emerging standard in 3D rendering on mobile devices
(OpenGL ES) to build a mobile player (called MobiX3D) for X3D
and H-Anim content. The rendering engine of the MobiX3D
player supports classic lighting and shading algorithms. We discuss
the performance of the player and we apply it to sign language
visualization.

CR Categories: H.5.1 [Information Interface and Presentation]:
Multimedia Information Systems—Artificial, augmented, and
virtual realities; I.3.8 [Computer Graphics]: Applications

Keywords: 3D rendering, mobile devices, OpenGL ES, X3D, sign
language

1 Introduction

In recent years, the increasing performance of mobile computing
devices such as Personal Digital Assistants (PDAs) or high-end
mobile phones has allowed these devices to support more and more
complex applications. However, rendering 3D graphics on mobile
devices is still considered a difficult task. Mobile devices are indeed
characterized by some serious limitations with respect to desktop
systems:

• limited CPU and memory;

• absence or limited performance of graphics accelerators;

• absence or limited performance of FPUs;

∗e-mail:nadalutti@dimi.uniud.it
†e-mail:chittaro@dimi.uniud.it
‡e-mail:buttussi@dimi.uniud.it

• energy consumption issues that limit designers of hardware
and software for mobile devices;

• lack of powerful development and debugging environments.

For these reasons, research on mobile 3D rendering is still limited,
but the increasing capabilities of mobile devices are now making it
easier to experiment with 3D. The proposed approaches fall in three
categories:

• hardware architectures for 3D rendering on mobile devices;

• remote 3D rendering architectures (the rendering process is
carried out on a powerful remote server and the results are
sent as a video to the mobile device using a wireless network);

• software architectures which carry out the entire 3D rendering
process on mobile devices.

The third category is very promising, but has received less attention
than the others. The most interesting results [Chang and Ger
2002; Duguet and Drettakis 2004] exploit techniques that are
alternative to the traditional polygon-based 3D rendering. The
goal of these approaches is to obtain a lower complexity for the
3D rendering process without losing much quality in the rendered
scene. However, in the latest years, OpenGL ES [Khronos Group
2003] has emerged as a standard for 3D rendering on mobile
devices and its approach is polygon-based.

In this paper, we experiment with polygon-based rendering of X3D
content on mobile devices using the OpenGL ES 1.1 API to build
a rendering engine that implements classic shading, lighting and
navigation algorithms. This rendering engine is integrated into our
X3D mobile player, called MobiX3D. At present, the MobiX3D
player fully supports the H-Anim [Humanoid Animation Working
Group 2004] standard and supports a large subset of the X3D
Interactive profile. Moreover, the MobiX3D player has been used
for sign language visualization on mobile devices. Our final goal is
to support the X3D Interactive profile.

At the moment of writing, there are no released solutions for
displaying X3D content on mobile devices and there is only one
commercial solution for displaying VRML content on mobile
devices, i.e. Pocket Cortona [ParallelGraphics 2004].

This paper is organized as follows. Section 2 surveys related work.
Section 3 describes in detail our work, analyzing the architecture,
the most interesting implementation details of the MobiX3D player,
and the subset of X3D it supports. Section 4 describes the use of
this player in the context of sign language visualization. Section



5 discusses the performance of our player. Section 6 provides
conclusions and outlines future research directions.

2 Related Work

2.1 3D Rendering on Mobile Devices

Although the literature about 3D rendering is wide, 3D rendering
on mobile devices is still a scarcely explored subject. Moreover,
since mobile devices have only recently reached a performance that
allows them to manage 3D graphics, most of the available papers
about 3D rendering on mobile devices focus on hardware or remote
rendering architectures rather than on-board software solutions.

Research about hardware architectures for 3D rendering on mobile
devices [Woo et al. 2002; Sohn et al. 2004; Kameyama et al. 2003]
aims at producing very small graphic accelerator chips with high
performance and low power consumption.

Remote rendering is the most common solution adopted in the
literature for mobile devices. In this type of rendering, the
process is carried out on a remote computer with powerful graphic
acceleration and the results are sent (usually in video format) to the
mobile device using a wireless network. As a result, the mobile
device is just a simple client. Remote rendering has been used to:
i) display complex objects, such as 3D anatomy models, on mobile
devices [Grimstead et al. 2005; Lamberti et al. 2003; Sanna et al.
2004], and ii) implement augmented reality systems [Pasman and
Woodward 2003].

The need for a wireless network is a major disadvantage of remote
rendering solutions: wireless networks cannot be set up for every
possible environment. Moreover, current wireless networks have
limited bandwidth and these solutions need complex algorithms for
the preparation of data to be sent to the client.

Interesting proposals in software architectures for 3D rendering on
mobile devices concern alternative methods for 3D rendering such
as image-based rendering and point-based rendering. Image-based
rendering differs from polygon-based rendering in the input, i.e.
a set of 2D color images containing depth information at each
pixel (depth images). Each depth image also contains a matrix
that describes the camera or viewing setup, i.e. its position and
its direction. Because of its input, computational complexity
of image-based rendering is generally lower than polygon-based
rendering on mobile devices: it is linear in the number of pixels in
the display, while polygon-based rendering is linear in the number
of triangles (or other polygons) in the scene. This method has
one main disadvantage: there can be gaps between neighboring
pixels because every pixel value is computed independently. The
rendering algorithm proposed in [Chang and Ger 2002] consists
of two phases: i) a preprocessing phase that converts 3D models
(provided as set of polygons) into depth images; ii) a phase that
computes displayed images from depth images (warping).

Point-based rendering is a technique that renders the objects
starting from their vertices. In [Duguet and Drettakis 2004],
vertices are represented with hierarchical structures, called ρ-grids,
i.e. three-dimensional recursive grids with a regular and uniform
subdivision at each level. The subdivision factor is ρ x ρ x ρ for
each cell. The position of each vertex can be implicitly determined
by following the ρ-grid structure starting from the center of the
screen. This structure is very compact and flexible and allows one
to display the scene at different levels of detail. The experimental
results obtained by Duguet and Drettakis [2004] proved that the
optimal value for ρ is 3.

Other ideas for 3D rendering on mobile devices can be derived
from architectures for 3D rendering that are aimed at low-power
desktop computers. Tile-based rendering [Antochi et al. 2002] is
a promising approach in this context. This technique decomposes
a scene into smaller regions (tiles) and renders them one-by-one.
The main advantage of this scheme is that a small local buffer can
be associated to every tile, saving energy and improving efficiency.
Tile size is a critical variable because the more accesses to local
buffers are made the more energy is saved.

2.2 OpenGL ES

In the latest years, various libraries for 3D rendering on mobile
devices have been proposed, e.g. miniGL [Digital Sandbox Inc.
2000] on Palm OS and PocketGL [PocketGL 2000] on Microsoft
PocketPC were among the first and they were both subsets of
OpenGL APIs.

In 2003, the Khronos Consortium [Khronos Group 2003] proposed
OpenGL ES as a standard. After that, many libraries for 3D
rendering on mobile devices are implementations of the OpenGL
ES standard. The first API released by the Khronos Consortium was
the OpenGL ES 1.0 API. It is a subset of OpenGL 1.3, eliminating
redundancies and workstation functionalities that are not suitable
for the context of mobile devices. The OpenGL ES 1.0 API
uses fixed-point arithmetic that is more efficient than floating-point
arithmetic in mobile devices without floating-point unit.

In 2004, the OpenGL ES 1.1 API was released. It improves
version 1.0 by adding some OpenGL 1.5 functionalities, supporting
hardware fixed-function accelerators and floating-point units, and
improving power management.

In 2005, due to the increasing variety of mobile devices on the
market, the Khronos Consortium organized the OpenGL ES APIs
into two families: OpenGL ES 1.x for devices with fixed-function
3D graphics accelerators and OpenGL ES 2.x for devices with
programmable 3D graphics accelerators. The OpenGL ES 2.0
API has been released in July 2005 and uses the GLSL language
[Kessenich et al. 2004] for shading. The release of this API might
stimulate the production of programmable 3D graphics accelerators
for mobile devices, that could dramatically improve 3D graphics
performance of mobile devices.

3 MobiX3D player

In this section we describe in detail the MobiX3D player. To
develop our player, we used the Hybrid Rasteroid library [Hybrid
Ltd. 2005], an implementation of the OpenGL ES 1.1 API, and
the GlutES [Pouderoux and Marvie 2005] toolkit for the rendering
operations. GlutES is the mobile version of the Glut toolkit for
OpenGL and provides a set of high-level functions to manage 3D
graphics with OpenGL ES.

The MobiX3D player currently supports a subset of the X3D
Interactive profile and the full H-Anim standard. The X3D nodes
currently supported by MobiX3D are listed in table 1.



Type Name

X3D (Root)
Scene Graph Structure Node Scene

Shape

Scene Graph Statements Route
DEF/USE

MetadataDouble
MetadataFloat

Metadata Node MetadataInteger
MetadataSet

MetadataString

Sphere
Base Geometry Node Cone

Cylinder
Box

PointSet
Composed Geometry Node IndexedLineSet

IndexedFaceSet

Transform
Grouping Node Group

Anchor
Inline

Appearance
Material

ImageTexture2D
Appearance Node Color

Coordinate
Normal

TextureCoordinate
TextureTransform

Viewpoint
Bindable Node Background

NavigationInfo

PositionInterpolator
ColorInterpolator

Interpolator Node RotationInterpolator
ScalarInterpolator

CoordinateInterpolator
NormalInterpolator

DirectionalLight
Light Node PointLight

SpotLight

Time-dependent Node TimeSensor

Filter Node BooleanFilter

Trigger Node TimeTrigger

HAnimHumanoid
HAnimJoint

H-Anim Node HAnimDisplacer
HAnimSegment

HAnimSite

Descrption Node WorldInfo

Table 1: Nodes currently supported by the MobiX3D player

With the MobiX3D player, the user can navigate through the scene
by pressing the cursor keys on the mobile device. Our player
currently supports two classic navigation modes:

• pan: the user navigates the scene by moving the camera
position parallel to the view plane;

• walk: the user navigates the scene using a walk-like behavior.

The rendering engine of the MobiX3D player supports three classic
shading and lighting algorithms:

• wireframe: displays only the edges of the polygons in the
scene;

• flat: associates only one color to every polygon in the scene;

• gouraud: assigns colors to every pixel within a polygon using
a linear interpolation of the colors of its vertices.

3.1 Architecture

Figure 1 illustrates a high-level architecture of the MobiX3D player,
that is organized in four modules:

• Renderer: this module manages all the rendering process,
calling the other modules when necessary. Its input is a X3D
file and its output is the display of the 3D scene.

• Event Manager: this module manages the events. It contains
the set of all Routes of the X3D scene. Its input is a set of
events (supplied from the Renderer) and its output is a set of
changes in the attributes of X3D nodes that define the scene.
Two types of events are handled: (i) user events: generated
when the user interacts with the player (e.g., shading model
changes); (ii) animation events: generated to implement
animations (e.g., timers update).

• Scene Representation: this module contains an internal
representation of the X3D scene graph. Its input is a set of
changes sent by the Scene Manager and its output is a set of
calls to the Renderer module for visualizing these changes on
the display.

• Parser: this module parses the X3D file. Its input is a X3D
file (supplied from the Renderer) and its output is the set
of X3D nodes that defines the 3D scene (sent to the Scene
Representation for initializing its scene graph) and the set of
Routes that defines the animations (sent to the Event Manager
for initializing its Route list).

3.2 Implementation

MobiX3D has been developed in C++ for the PocketPC 2003
platform. Two versions have been implemented: one using
eMbedded Visual C++ 4.0, the other using Visual Studio 2005.

3.2.1 X3D Scene Management

The most complex parts of the MobiX3D player are those that
manage X3D animations and the representation of scene graph.

In X3D, animations are implemented by a set of Routes which
establish event paths between nodes. The nodes involved in an
animation are usually TimeSensor and Interpolator nodes to build a
time-dependent animation, TimeTrigger and BooleanFilter nodes to
start a part of an animation immediately after the previous part has
finished, and geometry nodes whose attributes are modified during
the animation.
In the MobiX3D player, Routes are managed by a function called by
a timer that clocks every 50 milliseconds (20 times per second). In
this function, all the Routes statements in the X3D scene are solved
and, if the animation is active, the values of TimeSensor nodes are
updated. Then, the related Interpolator values are calculated and
the geometry nodes attributes are updated. Finally, the values of



Figure 1: The architecture of MobiX3D.

TimeTrigger and BooleanFilter nodes are computed to start the next
part of the animation.

The scene graph is represented by dedicated classes in the Scene
Representation module. Every X3D node supported by our
rendering engine is represented by its related class. Every class
related to a X3D node contains two methods: draw and parse. The
draw methods contain the OpenGL ES calls required to render the
X3D nodes which they belong to. The parse methods contain the
parsing instructions for the X3D nodes which they belong to. These
methods have a fundamental role in our rendering engine: the initial
values of the attributes of all nodes are retrieved and stored in
memory, while parsing the X3D file, by sequentially calling the
parse methods of the nodes. X3D scene drawing is carried out
by sequentially calling the draw methods of the X3D nodes in the
scene.

3.2.2 Some implementation issues

The issues encountered while developing our rendering engine are
related to the limitations of OpenGL ES that implements only a
subset of OpenGL functionalities.

Firstly, OpenGL ES supports only the rendering of triangles, lines
and points, while OpenGL supports the rendering of all (convex)
polygons, lines and points. The IndexedFaceSet node in X3D
specifies a 3D shape composed by a structured set of polygons
(with any number of edges). Each polygon is specified by a list of
indexes into the vertex coordinates. These indexes can be specified
indifferently in clockwise or counterclockwise order. So, to support
this node, we had to develop an algorithm that converts every
convex polygon into triangles.

Given a polygon P, with n edges, our triangulation algorithm can
be formalized as follows: (i) polygon vertices are labeled with
numbers from 1 to n, starting from an arbitrary vertex. The first

vertex is labeled with the number 1, the second with number 2 and
the last vertex with number n; (ii) the polygon is divided into the
following set of triangles: {(1,2,3), . . . ,(1, n− 1, n)}. Figure 2
illustrates an example of a polygon triangulated by this algorithm.

Figure 2: An example of triangulation of a convex polygon with the
adopted algorithm.

This algorithm is not the best for triangulating polygons because
it assumes that the polygon to triangulate is convex and forces
the first vertex to belong to all the resulting triangles. We chose
to use this algorithm because its complexity is linear and it does
not require additional data structures to work: we have embedded
this algorithm in the Parser and, when the Parser recognizes a
new polygon, the algorithm automatically triangulates it using the
Parser data structures. In literature there are some good algorithms
(e.g. [Narkhede and Manocha 1995]) that support also non-convex
polygons, but they are more complex (O(n log n)) and they would
not be easily integrated in the Parser because they require additional
data structures.
The chosen algorithm could be implemented with the OpenGL
ES instruction glDrawArrays(GL TRIANGLE FAN), but this



instruction has different behaviors between clockwise and
counterclockwise vertex orders (a counterclockwise order indicates
front facing triangles, a clockwise order indicates back facing
triangles). To avoid back-face culling of solid objects, we do
not use the glDrawArrays instruction to triangulate polygons: our
algorithm always orders the vertices of the obtained triangles in
counterclockwise order.

Moreover, in OpenGL ES there is only one way for rendering a
set of primitives. For example, to render a set of triangles one has
to proceed in three steps: (i) declare an array for the coordinates
of the vertices of all the triangles which will be rendered; (ii) use
the glVertexPointer instruction to create a pointer to the vertices
defined in the array; (iii) use the glDrawArrays(GL TRIANGLES)
instruction to render simultaneously the triangles.
In OpenGL, other approaches are available to render a set of
triangles. The most used approach goes through the following
steps: (i) execute the glBegin(GL TRIANGLES) instruction to start
the list of vertices; (ii) use the glVertex instruction to specify the
coordinates of each vertex (a glVertex call can specify only a single
vertex); (iii) use the glEnd instruction to end the list of vertices.
This approach is more flexible because vertex coordinates can be
calculated while drawing the primitives (between the glStart and
glEnd instructions) and it is not necessary to specify the number of
primitives that will be rendered.

4 Sign Language Application

The MobiX3D player has been used for displaying sign language
sentences on mobile devices. Sign language visualization can be
useful for teaching sign language to deaf children, for defining
sign language visual dictionaries or, coupled with a speech
recognition engine, for translating natural language into sign
language. However, displaying sign language is a difficult task:
if animations are not very precise the user can misunderstand the
meaning of the gestures. Moreover, when there is no gesture
associated to a word, it is necessary to fingerspell the word.
Fingerspelling consists in spelling a word letter-by-letter with
fingers movement and it is very difficult to display due to the little
size of fingers and the similarity of the movements associated to the
letters.

For these reasons, although sign language visualization has been
studied in the literature, no proposals concern mobile devices
because of their limited performance.
Sign language visualization is being used for teaching sign
language to deaf children [Karpouzis et al. 2006; Geitz et al. 1996;
Sagawa and Takeuchi 2002] or for defining sign language visual
dictionaries [Wilcox et al. 1994]. The ViSiCAST project [Elliott
et al. 2000] aims at improving the accessibility of public services by
using monitors that display humanoids performing sign language
translation of what employees say. Displaying a humanoid is a
better solution than using text subtitles for two reasons: (i) most
deaf people consider sign language as their mother language; (ii)
humanoids can attract user’s focus of attention and can convey
additional conversational and emotional cues.

We have used the MobiX3D player to display a H-Anim humanoid
that performs sign language on mobile devices. To improve the
performance, in this application:

• we use a simplified, but realistic humanoid (about 6000
triangles);

• we disable navigation through the 3D scene to avoid possible
loss of gestures due to incorrect viewpoint;

• there is one fixed lighting source and gouraud is used as the
only possible shading model.

Figure 3 shows the H-Anim humanoid used in our tests while
performing sign language. A phrase in sign language is
implemented by an X3D file that contains a H-Anim humanoid and
the animation, implemented by a structured series of TimeSensors,
TimeTriggers, BooleanFilters, OrientationInterpolators and Routes.
Sign language sentences used in our tests were built with the
H-Animator system [Buttussi et al. 2006]. We used it to model
sign language gestures and to concatenate them into sign language
sentences.

Figure 3: Humanoid performing sign language.

5 Performance

We tested the MobiX3D player on PocketPC devices, such as the
Acer n10 and the Dell Axim X50V Pocket. The X50V has a 624
MHz processor with 64 MB of main memory and an Intel 2700G
graphics processor with 16 MB video RAM.

We tested performance of our player using three different
implementations of the OpenGL ES API:

• Rasteroid [Hybrid Ltd. 2005]: a proprietary implementation
of OpenGL ES 1.1 API;

• Vincent [Will 2004]: an open-source implementation of
OpenGL ES 1.1 API;

• Intel 2700G [Intel 2004]: implementation of OpenGL ES 1.0
API provided as interface by Intel 2700G graphics processors.



The 2700G has fixed-point arithmetic, so, unlike Rasteroid
and Vincent, the Intel 2700G implementation does not support
floating-point OpenGL ES instructions. Therefore, to test
our player with the Intel 2700G library we had to substitute
all floating-point instructions of the rendering engine with
the corresponding fixed-point ones. Thus, to compare the
performance of the three different implementations, we used
a version of the MobiX3D player with fixed point OpenGL
ES instructions, with a loss of accuracy in the representation
of scenes.

While Rasteroid and Vincent carry out the entire rendering process
via software, the Intel 2700G exploits some hardware acceleration
functions.

Figure 4: Visualization of the Simple World.

To test the performance of the MobiX3D player, we have chosen a
benchmark composed by three models:

• Simple World: a model of a very simple world with textures
(Figure 4). It consists of four huts and four trees, built by
using simple geometry nodes (cylinders, spheres, cones and
boxes);

• Humanoid: the humanoid described in Section 4, animated
and without textures (Figure 3);

• Udine3D: a simplified version of a model of a square in the
city of Udine [Udine3D 2004] (Figure 5). This model was
originally developed in VRML for the Web, then simplified

Figure 5: Visualization of the Udine3D model.

for its visualization on mobile devices [Burigat and Chittaro
2005] and now converted into X3D for testing our player. It
is textured and it needs transparency support to be correctly
visualized.

Table 2 illustrates the main features of the three models. This
benchmark tests the most complex features of the MobiX3D player:
animations, textures and transparency. Moreover, to put under
stress the player, we chose to have a high resolution for the X3D
Sphere (20 meridians and 20 parallels), Cylinder and Cone (20
slices and 5 loops for base circles) primitives. So, these primitives
are always composed respectively by 800, 440, and 240 triangles.
This explains the number of triangles obtained in the Simple World
and Udine3D benchmarks. The Humanoid benchmark is instead
composed by only IndexedFaceSet primitives with triangular faces:
its size in triangles does not vary among different X3D primitive
implementations.

Benchmark Simple World Humanoid Udine3D

Triangles 6584 6134 30666

Textures 0.87 MB No 5.54 MB

Animations No Yes No

Transparency No No Yes

Table 2: Models used as benchmarks

Table 3 lists the performance obtained with the MobiX3D player.



Frame rates have been measured while navigating the scene for the
Udine3D and Simple World benchmarks and while the animation
was performed for the Humanoid benchmark.

Benchmark Simple World Humanoid Udine3D

Rasteroid Version 6.2 4.4 1.4

Vincent Version 5.6 3.9 1.1

Intel 2700G Version 15.9 10.2 3.9

Table 3: Performance of MobiX3D in frames per second

Performance obtained by the Intel 2700G version is about 2-3
times better than that obtained by the Vincent and Rasteroid
versions. This difference in performance is due mainly to hardware
acceleration that is exploited by the Intel 2700G library. Moreover,
the quality of the rendered image is better in the Intel 2700G version
because it uses the texture compression algorithms provided by
the graphics accelerator. Vincent and Rasteroid performance are
comparable, with Rasteroid being slightly more efficient.

In our tests, performance obtained with the Intel 2700G version
is slightly worse than that obtained with the Pocket Cortona
VRML browser. However, Pocket Cortona does not use
texture compression algorithms provided by Intel 2700G graphics
accelerator and its texture accuracy is slightly worse than the Intel
2700G version of MobiX3D.

6 Conclusions and Future Work

To the best of our knowledge, MobiX3D is the first publicly
available X3D player for mobile devices. The final goal
of our project is to support the full X3D Interactive profile
and the H-Anim standard. MobiX3D can be downloaded at
http://hcilab.uniud.it/MobiX3D. With the MobiX3D player, we
currently obtain a 3.9 fps navigation through a X3D world with
about 30000 triangles and 5.54 MB of textures.

Our research is now proceeding in several directions. First, we will
use more efficient algorithms for shading and texturing, like those
described in [Ström and Akenine-Möller 2005].
Second, we will consider to port MobiX3D to other platforms (e.g.
Linux, Symbian, or Palm).
Third, we will improve the sign language visualizer, modeling
more accurate gestures and improving the humanoid. Then we will
test our sign language visualizer with deaf users on sign language
translation applications.
Finally, we will study the possibility of implementing seamless
shape deformation algorithms (e.g. [Babski and Thalmann 1999])
on mobile devices. Seamless shape deformation algorithms map the
humanoid into a single mesh and the movements into deformations
of this mesh. These deformations are parametric and simulate the
behavior of skin, muscles and bones. These algorithms tackle the
discontinuity problems in the movement of traditional humanoids,
implemented with a set of independent meshes.

7 Acknowledgements

Roberto Ranon and Stefano Burigat provided precious advice
during the development of the described work.
Our research has been partially supported by the Italian Ministry of
Education, University and Research (MIUR) under the PRIN 2005

project “Adaptive, Context-aware, Multimedia Guides on Mobile
Devices”.

References

ANTOCHI, I., JUURLINK, B., AND VASSILIADIS, S. 2002.
Selecting the Optimal Tile Size for Low-Power Tile-Based
Rendering. In ProRISC 2002: Proceedings of the thirteenth
Annual Workshop on Circuits, Systems and Signal Processing,
1–6.

BABSKI, C., AND THALMANN, D. 1999. A Seamless Shape for
HANIM Compliant Bodies. In VRML ’99: Proceedings of the
fourth symposium on Virtual reality modeling language, ACM
Press, New York, NY, USA, 21–28.

BURIGAT, S., AND CHITTARO, L. 2005. Location-aware
Visualization of VRML Models in GPS-based Mobile Guides.
In Web3D ’05: Proceedings of the tenth international conference
on 3D Web technology, ACM Press, New York, NY, USA,
57–64.

BUTTUSSI, F., CHITTARO, L., AND NADALUTTI, D. 2006.
H-Animator: A Visual Tool for Modeling, Reuse and Sharing of
X3D Humanoid Animations. In Web3D ’06: Proceedings of the
eleventh international conference on 3D Web technology, ACM
Press, New York, NY, USA.

CHANG, C.-F., AND GER, S.-H. 2002. Enhancing 3D Graphics
on Mobile Devices by Image-Based Rendering. In PCM ’02:
Proceedings of the Third IEEE Pacific Rim Conference on
Multimedia, Springer-Verlag, Berlin, Germany, 1105–1111.

DIGITAL SANDBOX INC. 2000. MiniGL.
http://www.dsbox.com/minigl.html.

DUGUET, F., AND DRETTAKIS, G. 2004. Flexible Point-Based
Rendering on Mobile Devices. IEEE Computer Graphics and
Applications 24, 4, 57–63.

ELLIOTT, R., GLAUERT, J. R. W., KENNAWAY, J. R., AND

MARSHALL, I. 2000. The Development of Language
Processing Support for the ViSiCAST Project. In Assets
’00: Proceedings of the fourth international ACM conference
on Assistive technologies, ACM Press, New York, NY, USA,
101–108.

GEITZ, S., HANSON, T., AND MAHER, S. 1996. Computer
Generated 3-Dimensional Models of Manual Alphabet
Handshapes for the World Wide Web. In Assets ’96:
Proceedings of the second annual ACM conference on Assistive
technologies, ACM Press, New York, NY, USA, 27–31.

GRIMSTEAD, I. J., AVIS, N. J., AND WALKER, D. W. 2005.
Visualization Across the Pond: How a Wireless PDA can
Collaborate with Million-Polygon Datasets via 9,000km of
Cable. In Web3D ’05: Proceedings of the tenth international
conference on 3D Web technology, ACM Press, New York, NY,
USA, 47–56.

HUMANOID ANIMATION WORKING GROUP. 2004. H-Anim.
http://h-anim.org.

HYBRID LTD. 2005. Rasteroid.
http://www.hybrid.fi/main/esframework/index.php.

INTEL. 2004. Intel 2700G Graphics Accelerator.
http://www.intel.com/design/pca/prodbref/300571.htm.



KAMEYAMA, M., KATO, Y., FUJIMOTO, H., NEGISHI, H.,
KODAMA, Y., INOUE, Y., AND KAWAI, H. 2003. 3D
Graphics LSI Core for Mobile Phone ”Z3D”. In HWWS
’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 60–67.

KARPOUZIS, K., CARIDAKIS, G., FOTINEA, S.-E., AND

EFTHIMIOU, E. 2006. Educational Resources and
Implementation of a Greek Sign Language Synthesis
Architecture. Computers & Education, Special Issue in
Web3D Technologies in Learning, Education and Training,
Elsevier. (In press).

KESSENICH, J., BALDWIN, D., AND ROST, R. 2004. The
OpenGL Shading Language.
http://www.opengl.org/documentation/oglsl.html.

KHRONOS GROUP. 2003. OpenGL ES.
http://www.khronos.org/opengles/.

LAMBERTI, F., ZUNINO, C., SANNA, A., FIUME, A., AND

MANIEZZO, M. 2003. An Accelerated Remote Graphics
Architecture for PDAs. In Web3D ’03: Proceeding of the eighth
international conference on 3D Web technology, ACM Press,
New York, NY, USA, 55–61.

NARKHEDE, A., AND MANOCHA, D. 1995. Fast Polygon
Triangulation Based on Seidel’s Algorithm. In Graphics Gems
V, A. W. Paeth, Ed. AP Professional, Boston, MA, USA,
394–397.

PARALLELGRAPHICS. 2004. Pocket Cortona.
http://www.parallelgraphics.com/products/cortonace/.

PASMAN, W., AND WOODWARD, C. 2003. Implementation
of an Augmented Reality System on a PDA. In ISMAR
’03: Proceedings of the second IEEE and ACM International
Symposium on Mixed and Augmented Reality, IEEE Computer
Society, Washington, DC, USA, 276.

POCKETGL. 2000.
http://www.sundialsoft.freeserve.co.uk/pgl.htm.

POUDEROUX, J., AND MARVIE, J. E. 2005. GlutES.
http://iparla.labri.fr/softwares/glutes/.

SAGAWA, H., AND TAKEUCHI, M. 2002. A Teaching System
of Japanese Sign Language Using Sign Language Recognition
and Generation. In MULTIMEDIA ’02: Proceedings of the tenth
ACM international conference on Multimedia, ACM Press, New
York, NY, USA, 137–145.

SANNA, A., ZUNINO, C., AND LAMBERTI, F. 2004. A Distributed
Architecture for Searching, Retrieving and Visualizing Complex
3D Models on Personal Digital Assistants. International Journal
of Human Computer Studies 60, 701–716.

SOHN, J.-H., WOO, R., AND YOO, H.-J. 2004. A Programmable
Vertex Shader with Fixed-point SIMD Datapath for Low Power
Wireless Applications. In HWWS ’04: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, ACM Press, New York, NY, USA, 107–114.

STRÖM, J., AND AKENINE-MÖLLER, T. 2005. iPACKMAN:
High-quality, Low-complexity Texture Compression for
Mobile Phones. In HWWS ’05: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, ACM Press, New York, NY, USA, 63–70.

UDINE3D. 2004. http://udine3d.uniud.it.

WILCOX, S., SCHEIBMAN, J., WOOD, D., COKELY, D., AND

STOKOE, W. C. 1994. Multimedia dictionary of American Sign
Language. In Assets ’94: Proceedings of the first annual ACM
conference on Assistive technologies, ACM Press, New York,
NY, USA, 9–16.

WILL, H. M. 2004. Vincent. http://sourceforge.net/projects/ogl-es.

WOO, R., YOON, C. W., KOOK, J., LEE, S. J., AND YOO,
H. J. 2002. A 120mW 3D Rendering Engine with 6Mb
Embedded DRAM and 3.2Gbyte/s Runtime Reconfigurable Bus
for PDA-Chip. IEEE Journal of Solid-State Circuits 37 (Oct.),
1352–1355.


