
H-Animator: A Visual Tool for Modeling, Reuse and Sharing

of X3D Humanoid Animations

Fabio Buttussi ∗

HCI Lab

Dept. of Math and Computer Science

University of Udine

via delle Scienze, 206

33100 Udine, Italy

Luca Chittaro†

HCI Lab

Dept. of Math and Computer Science

University of Udine

via delle Scienze, 206

33100 Udine, Italy

Daniele Nadalutti‡

HCI Lab

Dept. of Math and Computer Science

University of Udine

via delle Scienze, 206

33100 Udine, Italy

Abstract

Humanoid animation is a complex task which usually requires
particular skills and training. To simplify this process we propose
a visual tool, called H-Animator, which aims to help animators
(especially the novice ones) in modeling X3D animations for
H-Anim humanoids. Besides easiness of use, achieved through
intuitive metaphors and interaction styles, we aim at providing an
architecture to facilitate the reuse and sharing of X3D content,
allowing animators to build a wide archive of material to be reused.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques H.5.1
[Information Interfaces and Presentation]: Multimedia Information
Systems—Artificial, augmented, and virtual realities

Keywords: Visual modeling, H-Anim, X3D, animation database,
reuse, sharing.

1 Introduction

Modeling humanoid animations is often a time-consuming and
difficult task even for skilled animators. To speed-up and make
this process easier, several researchers [Arafa and Mamdani 2003;
Carretero et al. 2005; Davis et al. 2003; Huang et al. 2003a;
Huang et al. 2003b; Kshirsagar et al. 2002; Perlin and Goldberg
1996; Yi et al. 2005] and companies [Alias-Wavefront 2005;
Discreet, Autodesk, Inc. 2005; Virtlock Technologies, Inc. 2005]
proposed solutions such as scripting animation languages and
visual modeling tools for a wide variety of 3D formats (e.g.,
VRML, MEL, OBJ, 3DS). These visual tools tend to focus on

∗e-mail: buttussi@dimi.uniud.it
†e-mail: chittaro@dimi.uniud.it
‡e-mail: nadalutti@dimi.uniud.it

a particular step of the animation process (e.g. humanoid mesh
modeling, low-level or high-level animation modeling) or are
designed for a specific context (e.g. dialogue animation, sign
language animation) or for particular target users (e.g. novice,
expert, 2D artist, 3D artist).
The H-Anim standard [Humanoid Animation Working Group
2004], now included in X3D, describes humanoids as an
hierarchically organized set of nodes. In particular Joint nodes
represent human articulations and Segment nodes represent the
geometry and appearance of humanoid portions. Since an H-Anim
animation consists of a set of rotations which are applied to Joint
nodes, all the animations modeled for a specific humanoid can
be reused with any other humanoid having similar anthropometric
measures. The standard suggests default names and positions for
the joints, but, since the actual positions in real humans vary
due to e.g. sex and age, joint positions should be customized
and the animations retargeted, if the animator needs to work with
anthropometrically different humanoids.
Although one of the aims of the standard is to obtain exchangeable
humanoids, there are actually few tools which let users easily reuse
the animations they previously built [Huang et al. 2003a; Yi et al.
2005]. Moreover, reuse is usually limited to 3D content built inside
a single team of animators, since there are no architectures which
allow a widespread organized sharing of X3D H-Anim humanoids
and animations.
Therefore, our research focuses on two main goals: (i) simplifying
the modeling process, by creating a fast and easy-to-use visual
tool which helps the user in each of the modeling phases, and (ii)
promoting the sharing of animations, thanks to a public database
integrated with the tool. To allow the modeling, reuse and sharing
of X3D H-Anim humanoid animations, we propose in this paper
H-Animator.

The paper is organized as follows. Section 2 surveys related work.
Section 3 describes the H-Animator tool, focusing on the most
interesting problems we encountered and the solutions we propose
to solve them. In Section 4, we show an application of the tool
to sign languages for the deaf. Section 5 concludes the paper and
outlines future research directions.

2 Related work

Since humanoid animation is needed in a variety of application
contexts, such as ergonomics, entertainment, simulation and sign



language visualization, several proposals [Arafa and Mamdani
2003; Kshirsagar et al. 2002; Huang et al. 2003b; Perlin and
Goldberg 1996; Carretero et al. 2005; Davis et al. 2003; Huang
et al. 2003a; Yi et al. 2005] to simplify animation modeling
have been made in the last years. The proposed solutions fall
in two main classes: scripting animation languages and visual
modeling tools. Other solutions, such as motion texture [Li et al.
2002], motion synthesis from annotations [Arikan et al. 2003] and
motion graphs [Kovar et al. 2002], have been investigated in the
literature. Anyway, these solutions were designed to work with
motion capture data and the acquisition of high quality motion
sequences requires expensive hardware, that is usually not an option
for novice animators, i.e. the intended users of the tool we propose.

2.1 Scripting animation languages

A scripting animation language is a language to describe
animations, specifying what and how a humanoid has to do. Most
of these languages (e.g., VHML [Gustavsson et al. 2001], CML
[Arafa and Mamdani 2003], AML [Kshirsagar et al. 2002]) focus
on high level details such as humanoid behavior (i.e. the user
can choose if the humanoid should be happy, angry, anxious, etc.,
affecting the way in which actions and gestures are performed)
or synchronization between different actions (e.g. walk while
observing the world around, jump after running) and between
gestures and speech. Only a few scripting languages (e.g. STEP
[Huang et al. 2003b], Improv [Perlin and Goldberg 1996]) consider
also the low-level modeling of actions and gestures, instead of
using a limited set of predefined ones. Interesting case studies
(e.g. Greek Sign Language [Karpouzis et al. 2006], Tai Chi
animation [Huang et al. 2003b]) prove that expert animators can
achieve significant results using scripting languages. Anyway, like
all programming languages, scripting animation languages need a
considerable learning time before being used effectively, so novice
animators may prefer more intuitive solutions.

2.2 Visual modeling tools

To exploit the intuitiveness of visual interaction, several interesting
visual modeling tools [Davis et al. 2003; Carretero et al. 2005;
Huang et al. 2003a; Yi et al. 2005] have been proposed in the
literature. They differ for the phases of the modeling process they
focus on, for the techniques used, for the intended users they are
thought for. For example, Davis et al. [2003] proposed a tool that is
specifically aimed at users who are skilled in 2D animation. Since
an animation can be subdivided in a sequence of postures (i.e. a set
of rotation values for the joints of the humanoid skeleton), the tool
exploits users’ abilities allowing them to draw 2D sketches of the
postures the humanoid must take. For each 2D sketch, the system
computes all the possible 3D postures which can be mapped into
it and then, considering the entire sequence of sketches, the tool
proposes a 3D animation. If the proposed animation is not the
desired one, users can edit it, by changing the selected 3D posture
for one or more sketches, choosing another mappable 3D posture in
the computed set.
While Davis et al. targeted a specific kind of users, the
solution proposed in [Carretero et al. 2005] is thought for a
particular application context: the high-level tool they describe
is specifically designed for dialogs and other animations where
speech is predominant. Since it considers high-level details, such
as synchronization between speech and gestures and behavioral
animation, the authors structured the tool as a front-end for
the VHML language [Gustavsson et al. 2001], combining the
synchronization features of the scripting language with the usability

of a visual tool. The tool lets the user choose one or more
humanoids and then type the text they have to read. The user can
also select the behavior of the humanoid by changing the color of
the text and insert animations by dragging special icons between
words. The tool is an interesting solution for dialog animation, but
cannot be efficiently used for other kinds of animations, because
the predefined animations and the interaction style are very context
specific.
A general visual modeling tool, which also introduces the idea
of animation “reuse”, is proposed in [Huang et al. 2003a]. The
proposed system is based on an animation database from which
animations and 3D models can be retrieved. All the animations
can be visually and interactively adjusted: for example the user can
change a female walking animation to a male one, or change the
destination the humanoid has to reach.
A database approach is supported also by [Yi et al. 2005]: this
recent paper proposes a visual tool to create animations of sign
language gestures (e.g. hand, arm, head movements) and signs (i.e.
set of gestures corresponding to a word of the language). Since the
same gesture can be reused in several signs and new signs can be
obtained by composing existing ones, the authors use a database to
store and reuse all the material built with the tool. Their final goal
is to allow deaf people to “write” in their own language, composing
sentences with the sign animations in the database.
Considering commercial solutions, Maya [Alias-Wavefront 2005]
and 3DSMax [Discreet, Autodesk, Inc. 2005] are two widely used
visual modeling tools. Both of them use proprietary file formats,
but some exporters and plug-ins to simplify H-Anim modeling and
animation have been proposed. In particular, [Amara et al. 2003]
describes a Maya plug-in that allows the user to export H-Anim
characters and body animations. To obtain anatomically realistic
surfaces during animations, the plug-in generates a body animation
table, that contains information to deform humanoid meshes during
rotations. A wide set of plug-ins for 3DSMax is described in
[Magnenat-Thalmann et al. 2004]. These plug-ins convert 3DSMax
skinning, skeleton and motion data into H-Anim humanoids and
animations. Another commercial tool which allows the users to
create H-Anim humanoids and animations is VizX3D [Virtlock
Technologies, Inc. 2005].

3 The H-Animator tool

Since we aim at simplifying the modeling of animations and
promote the sharing of X3D content, we designed and implemented
H-Animator, a visual tool for modeling, reuse and sharing of X3D
humanoid animations. In H-Animator, animations are subdivided
in two classes:

• simple animations are animations that can be defined by a few
keyframes, such as a single action (e.g. pointing, jumping,
kicking) or a simple gesture (e.g. moving the hands to
emphasize speech or to communicate in a sign language);

• complex animations are sequences of simple animations.

Composing complex animations is easier and quicker if the
animator can reuse previously stored simple animations [Huang
et al. 2003a; Yi et al. 2005]. Extending this idea, we propose a
model and share functionality: users can store the humanoids and
simple animations they modeled on a database and immediately
share them with a community of other animators, who can easily
reuse the 3D material in their animations.
To guide the user in the modeling, sharing and reusing phases, we
provided the H-Animator tool with three main functions:

• Jointplacer helps the user in producing an H-Anim humanoid,



using X3D meshes created with other 3D modeling tools; in
particular, it allows to easily place the humanoid joints;

• Keyframer guides the user in the creation of simple
animations, such as a single gesture or a particular action;

• Composer allows one to build complex animations using the
simple ones created by the user or shared by other animators.

H-Animator can be used locally by single users or teams, but to
achieve enhanced sharing functionalities can be connected to an
animator community server, as shown in Figure 1. On the server,
the most important component is the database which contains
humanoids and simple animations; X3D files of humanoid meshes
are saved in the network filesystem. Before uploading 3D material
on the server, the user can choose the rights she grants on it, e.g.,
she can ask to be cited when her material is reused and she can
allow or deny the alteration of the material.

Figure 1: The H-Animator functionalities.

The first three following subsections describe each of the main
functions mentioned above; the fourth briefly discusses license
aspects for 3D content sharing, focusing on how our tool deals
with content license management. The last subsection describes
implementation issues.

3.1 Visually placing humanoid joints

The creation of a H-Anim humanoid can be divided in several steps:
the meshes have to be manually modeled or acquired through 3D
scanners and a level of detail (LOA) for the humanoid has to be
chosen. If a segmented humanoid is needed, the meshes have to be
subdivided and associated to the segments required for the chosen
LOA. The last step before writing the X3D file is choosing the
center position of each skeleton joint.
Mesh modeling and joint placement are two important and difficult

steps. The first task can be efficiently carried out using a generic
3D modeling application, provided that it exports to X3D. For
example, the meshes of the humanoid in the screenshots of this
paper, were modeled with open-source software, i.e. Blender
[Blender Foundation 2005] and the Makehuman plug-in [MHTeam
2005] for modeling humanoids from sizing parameters, a technique
proposed in the literature by [Seo and Magnenat-Thalmann 2003].

Jointplacer allows one to load exported X3D meshes and focuses on
joint placement. This is a crucial step: since joints are the centers
of rotations, a wrong placement leads to unrealistic animations
that can even cause segments to separate from the body. Figure
2 provides an example: starting from the same resting position, the
right shoulder of the 3D humanoid is unrealisticly animated if the
joint is unproperly placed, while it is animated as expected when
the joint is in the correct position.

Figure 2: Two animations of the same humanoid with different
shoulder center positions.

Jointplacer follows a wizard interaction style, guiding the user
in the creation of the H-Anim humanoid, starting from existing
X3D meshes. After choosing the desired level of articulation and
associating the meshes with the corresponding H-Anim segments,
an interface for the joint placement is loaded. This interface
consists of two windows (Figure 3): the left one contains a table
listing all joints with the default H-Anim names and positions; the
right window embeds an X3D player, where the humanoid with the
desired segments and default joints is shown.

When the user selects a joint in the table, a red sphere is placed in
the embedded X3D player at the position that corresponds to the
current value for the selected joint. The user can simply drag the
sphere to place it in the desired position.
Unlike commercial applications, such as VizX3D [Virtlock
Technologies, Inc. 2005], we decided to show only the sphere
corresponding to the selected joint and we allow the user to change
the size of the sphere itself. This prevents problems such as the
impossibility to visually place the joint, due to the size of the
markers, which cover entire segments of the humanoid.

Even with an easy-to-use interface, the placement of joints is not
an intuitive task: dragging the markers is easier than specifying the
joint center coordinates (at least for novice animators), but finding



Figure 3: Jointplacer interface.

out a precise point position in a 3D space, trying to guess whether
it will lead to realistic animations or not, is usually very difficult,
even for expert animators. The user often learns that a placement is
not as good as she thought only when she uses the humanoid in an
animation, but correcting a joint position in the animation phase is
very time-consuming: for example, using VizX3D, the animator
learns about the wrong placement when she is in the preview
window or when she is defining the animation postures; in each
case she has to stop and go back to the main modeling interface;
there she can correct the joint position and then she can return to
the interface for modeling the animation or start the preview again.
Since the user may not find the correct placement at the first try, she
may have to switch between the interfaces more than once.
For these reasons, we provided our tool with an instant testing
feature: whenever she wants, the user can start one of three
predefined animations, consisting in the continuous rotation of
the selected joint children around one of the three axis. These
animations can be played also during joint placement: as the user
presses the “Update” button, the joint center is updated with the
current position of the sphere in the 3D scene, then the animation
continues with the new center. This feedback is very important
because it lets the user find the right placement by trying some
positions and immediately evaluating the resulting animation.

After the joint placement, the user can store the humanoid in
the local or community database to reuse it in her animations.
Moreover, according to the rights she grants, other animators may
use the humanoid in their applications.

3.2 Modeling simple animations

Animation techniques proposed in the literature to determine the
postures can be divided in at least three categories:

• direct kinematics techniques ask the user to input the rotation
values that have to be applied to the humanoid joints for each
of the key-postures (i.e. the main postures the humanoid has
to take during the animation);

• inverse kinematics techniques simplify the animation task
requiring only the position of the end effectors (e.g. hands or

feet) for each key-posture and automatically deriving rotation
values;

• motion capture techniques acquire the data from a human
actor using motion sensors or cameras.

Motion capture techniques are faster, but sometimes lack in
precision, since some postures which are significant for the
animation may not be acquired due to the sampling. On the
contrary, both kinematics classes of techniques guarantee precision,
since the animator inputs the data for all the important postures, but
the determination of the values is a time-consuming task.

Considering the treatment of temporal constraints, animation
techniques can be divided in:

• per-key techniques, if the rotation values and the time at which
each posture must be taken are determined only for particular
important postures;

• per-frame techniques, if the rotations are determined at
constant intervals of time;

• spacetime techniques, if the timing information is calculated
through a mathematical function that takes into account all
postures simultaneously (see also [Gleicher 2001]).

Keyframer, H-Animator function for visual modeling simple
animations, uses direct kinematics with a per-key approach, so
the user has to choose the rotation values for each key-posture
of the animation and the time at which each posture is taken.
Since this may be a difficult task, our solution provides a set of
specific interfaces to make animation modeling easier and quicker.
Keyframe animation modeling can be divided into two sub-tasks
[Terra and Metoyer 2004]: the specification of keyframe values
(i.e. the rotations of the joints) and the keyframe timing (i.e. the
specification of the time at which each posture is taken); Terra
and Metoyer [2004] proved, studying novice users, that keyframe
timing is more difficult than the specification of keyframe values
and that a clear separation of these two sub-tasks leads to an
easier modeling process. Therefore our tool presents two different
interfaces for these sub-tasks.

To be intuitive for the user, we have based modeling on a
photographer’s metaphor: in the posing interface of Keyframer
(Figure 4) the user poses the humanoid and then “takes pictures” of
it. A data structure containing the rotation values is automatically
associated to each picture, so, whenever the user clicks on a
previous picture, the corresponding rotations can be loaded and
applied to the humanoid joints in the X3D player embedded in the
window.

In X3D and H-Anim, the rotation values have to be specified in
the axis-angle notation using radians. This notation is usually
unfamiliar to people without specific mathematics background, so
we chose to let the user input the angle values in the more common
Eulerian notation using degrees. The tool performs the trivial
conversion between degrees and radians, but also the conversion
between the axis-angle and the Eulerian notation, using quaternions
and transformation matrixes. Even using degrees and the Eulerian
notation, specifying the rotation values is not an intuitive task, so
we let the user play with the values using the three sliders, labeled
“Pitch”, “Yaw” and “Roll”, placed on the right side of the interface.
As the user interacts with these sliders, the new rotation values
are constantly applied to the chosen joint of the humanoid in the
embedded X3D player on the left, giving a live feedback about the
posture it will take. So the user can “pose” the humanoid and then,
when the desired posture is obtained, she can “take a picture”.



Figure 4: Keyframer posing interface.

After collecting the desired pictures, the user can switch to the
timing interface (Figure 5). This time, the user has to choose a
sequence of pictures she took and place them on a timeline.

This operation is extremely easy: she first clicks on a picture and
the corresponding posture is immediately taken by the humanoid
in the embedded X3D player; then she clicks the instant on the
timeline where that posture has to be taken. This is also similar
to the ordering process a 2D cartoon animator has to go through,
facilitating the migration to 3D for this kind of users.
After timing the simple animation, the user can store it, so that it
can be reused in complex animations.

To test ease of use of Keyframer, we carried out a preliminary
informal evaluation with a few novice users. We gave them five
photographs of an actor assuming different postures and we asked
them to model the postures using the Keyframer posing interface.
The mean time to model a posture was 3 minutes and 33 seconds.

Figure 5: Keyframer timing interface.

After they modeled all the five postures we introduced them to the
Keyframer timing interface and we asked them to use the pictures of
the humanoid postures to make a simple animation. The mean time
to make the animation was 1 minute and 5 seconds. These results
are encouraging, since the users had no previous experience in
humanoid animation and it was the first time they used Keyframer.

3.3 Building complex animations

All the H-Anim humanoids created with Jointplacer and the
animations modeled with Keyframer are automatically stored in the
H-Animator database. Composer reuses this 3D content to quickly
build complex animations. Figure 6 shows Composer interface: on
the upper-left corner there is a combo-box to select the animation
category (e.g. teacher’s gestures, fitness exercises, American sign
language); this is used to filter the list of available animations right
below. When an animation is selected, an ad hoc user control,
called animation control, is updated. This control changes its
length according to the duration of the animation. Besides, the
two pictures displayed on the animation control show the first
and the last frame of the animation selected. After clicking the
animation control, the user can place an image representing the
simple animation in the timelines at the bottom, so she can easily
compose a complex animation sequence with the simple animations
she desires. At any moment, the user can see a preview of the
animation in the X3D player placed at the center of the interface.

When the user needs a preview or wants to save the final animation,
the chosen simple animations are retrieved from the database and
the transitions between them are automatically generated by the
tool. Transition generation is a problem for which the literature
presents several solutions: a simple solution is to start and end each
simple animation in the same neutral posture, so that no transition
is needed. Anyway this solution may be good only if the humanoid
can wait for some time in a given neutral posture, between each
pair of subsequent simple animations. Otherwise, forcing a neutral
posture may lead to unrealistic animations: for example, in a sign



Figure 6: Composer interface.

language application there are no pauses between signs in the same
sentence, so this solution must be avoided (see also [Zhao et al.
2000]). Interesting solutions, such as using finite state automata
[van Zijl and Raitt 2004] or Parallel Transition Networks [Badler
et al. 1999], were proposed for sign language applications or in the
implementation of scripting languages, but we decided to choose
a simpler semi-automatic linear interpolation technique: Composer
retrieves the simple animations from the database and then builds
a linear transition between the last posture of an animation and
the first posture of the next one. The resulting transition is good
when the postures can be linearly interpolated without collisions
and compenetrations, otherwise it may be unrealistic: for example,
if we consider an animation which ends with the hands behind
the body and we want to concatenate it with an animation where
the hands start in front of the body, the resulting linear transition
passes through the body. When such unrealistic transitions occur,
the user can choose an intermediate posture that has to be placed
between the subsequent simple animations. Finding and correcting
bad transitions is easy, since the user can test the animation in the
embedded X3D player and she can also check the initial and final
postures looking at the pictures on the animation controls.

3.4 Sharing the 3D content

Software on the web may be published under different licenses
(demo, freeware, shareware, open-source), but such licenses cannot
be applied to 3D material, since they are specifically written for
software: for example, terms like “code” are not appropriate to
describe animations and humanoids, because an animator may even
not know that there is a code under the 3D content. To overcome
this limitation, Creative Commons [2005] has recently adapted

open-source licenses to artistic material, proposing a family of
licenses, which differ for the rights the author grants.
We included the Creative Commons license system into the
H-Animator tool. In H-Animator, after modeling a humanoid or
a simple animation, the user has to set three attributes, which are
used to generate the Creative Commons license corresponding to
the rights the user grants. The attributes describe if it is required
to cite the author, if the reuse is restricted to non commercial
applications only and if the alteration of the content is denied.
When a user wants to reuse a humanoid or a simple animation
in a complex animation, similar attributes ask her if she agrees to
cite the original author, to use the content only for non commercial
applications, to preserve the original content. If she disagrees with
some requirements, the list of reusable 3D content in appropriately
filtered.

3.5 Implementation issues

H-Animator is written in C# using .Net Framework 2. To show
animations and previews of X3D content, we use BS Contact
ActiveX [Bitmanagement Software GmbH 2005] as an X3D
embedded player. BS Contact was chosen because it supports all
the X3D nodes we need to use and offers an interface which follows
the SAI (Scene Access Interface) specifications of X3D, adding
features such as a bitmap rendering function, which was used for
making the pictures of the humanoid postures in Keyframer.
Using BS Contact, the interactions between the tool and the X3D
scene can be implemented in three different ways: nodes and
routings can be added directly to an existing scene, VRML code
can be written and inserted in the 3D scene (addition of X3D code
was not supported by BS Contact when we began to implement



our application), the loaded X3D world can be replaced by reading
a new X3D file. The three methods present advantages and
disadvantages: the direct way is the faster one if the developer
needs to add only a few nodes or if she wants to change only some
field values, since it does not require to read files or write strings
of code; anyway, when a complex structure of nodes and routings
has to be added, inserting external VRML code is faster than going
through a long sequence of direct calls. Finally, the replacement of
the 3D world should be used only when the existing scene has to
be removed or when immediate response is not needed, since the
replacement method requires longer loading times.
For example, the red sphere used in Jointplacer is inserted in
a Transform node which also contains the PlaneSensor and the
routings to move it, so we wrote a short VRML file containing
these nodes that is added to the scene when the user selects a new
joint or updates the joint center value. Otherwise, the calculation of
the new joint position is performed by the C# application, reading
the position field of the Transform node that contains the sphere
directly through the SAI.
In Keyframer, all the X3D code for the previews is generated by
the tool using the common TimeSensor and OrientationInterpolator
nodes and it is then loaded inside the X3D player, since real-time
response is not needed for this task. However, to give instant
feedback when the user moves the sliders, we change the rotation
field of the joint involved directly through the SAI.
In Composer, the most interesting programming issues are related
to the transition animations: the tool reads from the database the
final and initial orientations for the previous and the next animation
respectively and then an OrientationInterpolator node is created
for each joint whose values differ between an animation and the
other. The concatenation is then achieved using BooleanFilter and
TimeTrigger nodes, which activates an animation as soon as the
previous one stops. The concatenation process takes about one
second on recent PCs (depending on the number of animations to
concatenate and the joints involved), so we load the new X3D scene
replacing the older one, since we do not need immediate response.

4 Sign language application

An interesting application domain for H-Anim humanoids is given
by sign languages, i.e. the visual communication languages used
by deaf people. For example, [Sagawa and Takeuchi 2002]
and [Karpouzis et al. 2006] describe architectures and tools that
use H-Anim humanoids to teach sign languages, while [Zhao
et al. 2000] presents an automatic machine translation system
from written English to American Sign Language. As described
in Section 2, [Yi et al. 2005] proposed a tool to create and
reuse animations for sign languages, using a specifically designed
database.
The deaf communities of different geographical areas use sign
languages which differ in grammar and vocabulary. Each of these
languages uses thousands of signs, so a single team of animators
cannot produce all the animations even with a fast and easy-to-use
tool. Therefore, the sharing capability becomes crucial: using
Keyframer, deaf communities could populate their own vocabulary
and easily share work among members. Besides, we provided our
tool with a sign language version of the Composer function (Figure
7), which allows the user to compose animations of sign language
sentences. The user can simply write sentences following the
grammar of her sign language, using the animations of the words
produced by her deaf community; then she can view the sentence
gestures in the X3D player. She can change or correct the sentence
and then she can save a X3D file, ready to be sent or published.
Communicating with sentences in their own sign language is very

important for deaf people, since writing in a language spoken by
hearing people is like using a foreign language for them.

Figure 7: Sign language version of Composer interface.

The fast retrieval of the animations (about one second per sign
language sentence, varying with the complexity of the sentence
and the number of joints involved), combined with the automatic
composition system and the sharing architecture, will allow
to create new or simplify existing sign language applications.
Examples are sign language chats, dictionaries, translation systems,
humanoid signing of TV programs and teaching tools.
Moreover, sign language animations which follow the X3D
H-Anim specifications can be displayed on PocketPC mobile
devices using MobiX3D Player [Nadalutti et al. 2006], a mobile
player that can display X3D scenes containing H-Anim humanoids.
Using H-Animator together with MobiX3D Player will allow for
innovative mobile sign language applications.

5 Conclusions and future work

In this paper, we proposed a visual modeling tool, called
H-Animator. This tool aims to help both expert and novice
animators in the modeling of H-Anim humanoid animations for
X3D. We have based simple animation modeling on a familiar
metaphor and we provide animation previews and immediate
feedback about postures, while the possibility to reuse and share
the 3D content is a result of the architecture based on a database.
This last feature allows one to build humanoid and animation
archives, simplifying the production and sharing of 3D content and
applications, since an animator can search if the 3D material she
needs is already on the database, instead of remodeling it. This is
particularly important if huge databases are needed, as in the sign
language application introduced in Section 4.
Obviously, H-Animator is not an alternative to commercial
tools and plug-ins that allow for greater flexibility. Anyway,



these tools are not freely available and thought for
expert animators, while H-Animator is publicly available
(http://hcilab.uniud.it/h-animator/) and the results of the
preliminary evaluation are encouraging with respect to its
usability for novice animators.
We are currently working on a new release of H-Animator which
will integrate new features. In particular, to simplify the posing
task we are working to introduce inverse kinematics combined
with a visual end effector manipulation system. Another important
feature will be a retargeting interface to adapt the animations for
anthropometrically different humanoids.

6 Acknowledgements

Our research has been partially supported by the Italian Ministry of
Education, University and Research (MIUR) under the PRIN 2005
project “Adaptive, Context-aware, Multimedia Guides on Mobile
Devices”.

References

ALIAS-WAVEFRONT, 2005. Maya.
http://www.aliaswavefront.com/en/products/maya/.

AMARA, Y., GUTIÉRREZ, M., VEXO, F., AND THALMANN,
D. 2003. A maya exporting plug-in for mpeg-4 fba human
characters. In RICHMEDIA ’03: Proceedings of the First
International Workshop on Interactive Rich Media Content
Production: Architectures, Technologies, Applications and
Tools, 121–130.

ARAFA, Y., AND MAMDANI, A. 2003. Scripting embodied agents
behaviour with cml: character markup language. In IUI ’03:
Proceedings of the 8th international conference on Intelligent
user interfaces, ACM Press, New York, NY, USA, 313–316.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2003.
Motion synthesis from annotations. ACM Trans. Graph. 22, 3,
402–408.

BADLER, N. I., PALMER, M. S., AND BINDIGANAVALE, R. 1999.
Animation control for real-time virtual humans. Commun. ACM
42, 8, 64–73.

BITMANAGEMENT SOFTWARE GMBH, 2005. Bs contact
vrml/x3d. http://www.bitmanagement.de.

BLENDER FOUNDATION, 2005. Blender. http:www.blender.org.

CARRETERO, M. P., OYARZUN, D., ORTIZ, A., AIZPURUA, I.,
AND POSADA, J. 2005. Virtual characters facial and body
animation through the edition and interpretation of mark-up
languages. Computers and Graphics 29, 189–194.

CREATIVE COMMONS, 2005. Creative commons licences.
http://creativecommons.org.

DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVIĆ;, Z., AND

SALESIN, D. 2003. A sketching interface for articulated
figure animation. In SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, Aire-la-Ville, Switzerland, 320–328.

DISCREET, AUTODESK, INC., 2005. 3ds max.
http://www.discreet.com/products/3dsmax/.

GLEICHER, M. 2001. Comparing constraint-based motion editing
methods. Graphical Models 63, 107–134.

GUSTAVSSON, C., BEARD, S., STRINDLUND, L., HUYNH, Q.,
WIKNERTZ, E., MARRIOT, A., AND STALLO, J., 2001. Vhml
working draft v0.3. http://www.vhml.org/documents/VHML/.

HUANG, A., HUANG, Z., PRABHAKARAN, B., AND C. R. RUIZ,
J. 2003. Interactive visual method for motion and model
reuse. In GRAPHITE ’03: Proceedings of the 1st international
conference on Computer graphics and interactive techniques in
Australasia and South East Asia, ACM Press, New York, NY,
USA, 29–36.

HUANG, Z., ELIËNS, A., AND VISSER, C. 2003. Implementation
of a scripting language for vrml/x3d-based embodied agents. In
Web3D ’03: Proceeding of the eighth international conference
on 3D Web technology, ACM Press, New York, NY, USA,
91–100.

HUMANOID ANIMATION WORKING GROUP, 2004. H-anim.
http://h-anim.org.

KARPOUZIS, K., CARIDAKIS, G., FOTINEA, S., AND

EFTHIMIOU, E. 2006. Educational resources and
implementation of a greek sign language synthesis architecture.
Computer and Education, Special Issue in Web3D Technologies
in Learning, Education and Training, In press.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 473–482.

KSHIRSAGAR, S., MAGNENAT-THALMANN, N.,
GUYE-VUILLÈME, A., THALMANN, D., KAMYAB, K.,
AND MAMDANI, E. 2002. Avatar markup language. In EGVE
’02: Proceedings of the workshop on Virtual environments 2002,
Eurographics Association, Aire-la-Ville, Switzerland, 169–177.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture:
a two-level statistical model for character motion synthesis. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, ACM Press, New
York, NY, USA, 465–472.

MAGNENAT-THALMANN, N., CORDIER, F., SEO, H., AND

PAPAGIANAKIS, G. 2004. Modeling of bodies and clothes
for virtual environments. In CW ’04: Proceedings of the
2004 International Conference on Cyberworlds (CW’04), IEEE
Computer Society Press, Los Alamitos, CA, USA, 201–208.

MHTEAM, 2005. Makehuman. http://www.dedalo-3d.com.

NADALUTTI, D., CHITTARO, L., AND BUTTUSSI, F. 2006.
Rendering of x3d content on mobile devices with opengl es.
In Web3D ’06: Proceedings of the eleventh international
conference on 3D Web technology, ACM Press, New York, NY,
USA.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: a system for
scripting interactive actors in virtual worlds. In SIGGRAPH
’96: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 205–216.

SAGAWA, H., AND TAKEUCHI, M. 2002. A teaching system
of japanese sign language using sign language recognition and
generation. In MULTIMEDIA ’02: Proceedings of the tenth
ACM international conference on Multimedia, ACM Press, New
York, NY, USA, 137–145.



SEO, H., AND MAGNENAT-THALMANN, N. 2003. An automatic
modeling of human bodies from sizing parameters. In SI3D ’03:
Proceedings of the 2003 symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, 19–26.

TERRA, S. C. L., AND METOYER, R. A. 2004. Performance
timing for keyframe animation. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, 253–258.

VAN ZIJL, L., AND RAITT, L. 2004. Implementation experience
with collision avoidance in signing avatars. In AFRIGRAPH ’04:
Proceedings of the 3rd international conference on Computer
graphics, virtual reality, visualisation and interaction in Africa,
ACM Press, New York, NY, USA, 55–59.

VIRTLOCK TECHNOLOGIES, INC., 2005. Vizx3d.
http://www.vizx3d.com.

YI, B., FREDERICK C. HARRIS, J., AND DASCALU, S. M.
2005. From creating virtual gestures to ”writing” in sign
languages. In CHI ’05: CHI ’05 extended abstracts on Human
factors in computing systems, ACM Press, New York, NY, USA,
1885–1888.

ZHAO, L., KIPPER, K., SCHULER, W., VOGLER, C., BADLER,
N. I., AND PALMER, M. 2000. A machine translation
system from english to american sign language. In AMTA
’00: Proceedings of the 4th Conference of the Association for
Machine Translation in the Americas on Envisioning Machine
Translation in the Information Future, Springer-Verlag, London,
UK, 54–67.


