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Abstract. In recent years, technological developments have made it possible to 
build interactive 3D models of objects and 3D Virtual Environments that can be 
experienced through the Web, using common, low-cost personal computers. As 
in the case of Web-based hypermedia, adaptivity can play an important role in 
increasing the usefulness, effectiveness and usability of 3D Web sites, i.e., Web 
sites distributing 3D content. This paper introduces the reader to the concepts, 
issues and techniques of adaptive 3D Web sites. 

14.1   Introduction 

In recent years, technological developments have made it possible to build interactive 
3D models of objects and 3D Virtual Environments (hereinafter, 3D VEs) that can be 
experienced through the Web, using common, low-cost personal computers. As a 
result, 3D content is increasingly employed in different Web application areas, such 
as education and training [18, 30, 40], e-commerce [26, 36], architecture and tourism 
[42, 44], virtual communities [2,45] and virtual museums [4]. 

Web sites distributing 3D content (hereinafter, we call them 3D Web sites for 
simplicity) can be divided into two broad categories:  
- sites that display interactive 3D models of objects embedded into Web pages, such 

as e-commerce sites allowing customers to examine 3D models of products [26], 
and  

- sites that are mainly based on a 3D VE which is displayed inside the Web 
browser, such as tourism sites allowing users to navigate inside a 3D virtual city 
[44].  

In the first case, the primary information structure and user’s interaction methods 
are still based on the hypermedia model, with the additional possibility of inspecting 
3D objects. In the second case, the primary information structure is a 3D space, within 
which users move and perform various actions. For example, a furniture e-commerce 
site might be based on a 3D virtual house where users can walk, choose furniture 
from a catalogue, and place it in the various rooms [36].  

3D Web sites are not meant to substitute the hypermedia model which is the 
mainstream in today’s Web, but they can be more effective when there is added value 



in interacting with a 3D visualization, or in providing a first-person virtual experience 
close to a real-world one. For example, in the case of e-commerce, 3D models give 
customers the ability to visually inspect, manipulate, try and customize products 
before purchasing as they are accustomed to do in the real world [27]. In the case of 
cultural heritage, a Web museum implemented as a 3D VE allows one not only to 
display the museum items, but also to convey their "cultural setting" by placing them 
in a proper environment. 

As in the case of Web-based hypermedia, adaptivity can play an important role in 
increasing the usefulness, effectiveness and usability of 3D Web sites. For example, 
an intelligent adaptive navigation support system could help users with different 
navigation abilities in finding targets, orienting themselves, and gaining spatial 
knowledge of the environment. Unfortunately, there are currently no well-established 
techniques or commercial tools to build adaptive 3D Web sites. Moreover, because of 
conceptual and technical peculiarities of 3D Web sites, most approaches, techniques 
and software tools developed for the Adaptive Web cannot be straightforwardly 
applied to personalize 3D Web content, navigation and presentation. However, some 
research projects have addressed the issue of adaptivity for 3D Web sites. For 
example, a first software architecture [17] for dynamic construction of personalized 
3D Web content has been proposed and applied to e-commerce [14,16] and virtual 
museums [13]. Some researchers have developed methods for personalized navigation 
support [12,27], adaptive interaction [11] and content presentation [24] in 3D VEs. 
Recently, there have been some attempts at experimenting with general-purpose 
frameworks for Web adaptivity to deliver personalized 3D content [15,21]. 

This Chapter will introduce the reader to the concepts, issues and techniques of 
adaptive 3D Web sites. We will mainly focus on 3D Web sites based on 3D VEs, 
since this category is the most general and complex one (but most of the techniques 
we will present can be applied also to Web sites with interactive 3D objects). The 
Chapter is structured as follows. Section 14.2 provides an introduction to 3D Web 
sites for the novice reader, overviewing the major application areas, and mentioning 
the main technologies, with a focus on standards. Section 14.3 discusses adaptivity in 
the context of 3D Web sites and with respect to Web-based hypermedia, separating 
the problems of modeling and adaptation. Section 14.4 describes an example of a full 
generic architecture for adapting 3D Web content, which is instantiated in Section 
14.5 considering a detailed example in the domain of e-commerce. Finally, Section 
14.6 concludes the Chapter. 

14.2   3D Web Basics 

The languages, protocols and software tools that make it possible to build 3D models 
and 3D VEs that can be experienced through the Web are collectively identified with 
the term Web3D technologies. Nowadays, thanks to the increase in network 
bandwidth and processing power (especially 3D graphics capabilities), Web3D 
technologies allow a large number of users worldwide to experience complex 3D 
Web content, such as virtual cities, visualizations of scientific data, or virtual 
museums. 



Web3D technologies are based on the basic technical and architectural choices 
typical of Web technologies: content, represented in a proper (and typically textual) 
format, is stored on a server, requested by a client, typically through HTTP, and 
displayed by a browser, or, more often, by a plug-in for a Web browser. As a result, 
3D content can be strongly integrated with other kinds of Web content, by 
augmenting Web sites with 3D interactive objects (a 3D model can appear into a Web 
page together with HTML content) as well as by displaying most types of Web 
content (such as images, sounds, videos) inside a 3D VE accessible through the Web. 
This is the main distinctive features of Web3D technologies with respect to other 
kinds of interactive 3D graphics-related technologies, such as those historically 
employed in Virtual Reality. Moreover, while Virtual Reality typically focuses on 
immersive 3D experiences, for example employing head-mounted displays and data 
gloves, 3D Web content is typically experienced with the input/output devices of 
today's common personal computers (CRT or LCD monitor, keyboard and mouse).  

14.2.1   Applications and Motivations  

In the following, we overview the main application domains for 3D Web sites, present 
possible advantages for using 3D content on the Web, and cite some available 
systems.  

14.2.1.1   Learning and Training 
3D VEs offer the possibility to reproduce the real world or to create imaginary 
worlds, providing experiences that can help people in understanding concepts as well 
as learning to perform specific tasks in a safe environment. The possibility of 
delivering educational 3D VEs through the Web allows one to reach potentially large 
numbers of learners worldwide, at any time (see [18] for a thorough discussion of 3D 
Web applications in education, learning and training). Employing 3D graphics allows 
for more realistic representations of subjects or phenomena, offering the possibility of 
analyzing the same subject from different points of view. Examples in medical 
education [30] include 3D reconstructions of parts of the human body [47] and 3D 
simulators [39], like the one shown in Figure 1. Other applications have been 
developed for foreign language education [40], maintenance training [19, 37], special 
needs education [31] and optics teaching [50].  



 
Fig. 1. 3D Web medical training simulator. Image from the WebSET project, reproduced with 
permission of Nigel W. John. 

14.2.1.2   E-commerce and Product Visualization 
Although almost all e-commerce Web sites use hypermedia-based interfaces, a few 
sites have attempted to provide users also with 3D interfaces [1], allowing them to 
explore a 3D VE representing a store, as in Figure 2. A 3D Web store can have some 
advantages, if properly implemented:  
- it is closer to the real-world shopping experience, and thus more familiar to the 

customer,  
- it supports customer’s natural shopping actions (such as walking, looking around 

the store, picking up products,…),  
- it can satisfy emotional needs of customers, by providing a more immersive and 

visually attractive experience,  
- it can satisfy social needs of customers, by allowing them to meet and interact 

with people (e.g., other customers or salespeople).  
On today’s e-commerce sites, the simple integration of interactive 3D objects into 
Web pages, rather than full 3D store environments, is more common, for example in 
the automotive market [26]. 



 
Fig. 2. @Mart 3D Shopping Mall [1].  

14.2.1.3   Virtual Museums 
Online collections of cultural information are useful if the digital representations of 
physical items contain enough detail to support the needs of visitors, e.g. researchers. 
Collections such as photographs or manuscripts can often be effectively acquired and 
displayed with 2D digital images. However, images are less effective as surrogates for 
three-dimensional items, such as sculptures, since much spatial information is lost, as 
the 3D shape of an object has to be flattened onto a two-dimensional view from a 
single perspective. In these cases, using 3D models can better support the needs of 
virtual museums visitors.  

One can also build 3D VEs that contain representations of cultural objects as well 
as their contextual environment, e.g. to:  
- provide a situated representation of objects; 
- virtually reconstruct objects, structures and environments that have been damaged 

in the past, or do not exist anymore;  
- build environments that never existed physically, but represent an appropriate 

conceptual or architectural environment, such as the virtual reconstruction of 
Leonardo’s ideal city [4] shown in Figure 3. 

 



 
Fig. 3. The virtual reconstruction of Leonardo’s ideal city [4]. Image reproduced with 
permission of Thimoty Barbieri. 

14.2.1.4   Architecture and Virtual Cities 
Many 3D Web sites allow users to move inside 3D models of buildings and virtual 
cities [42,44], sometimes providing the capability of seeing each other and chatting. 
Although most of these sites, such as the one shown in Figure 4, focus on simply 
reproducing real-world places, there are many possible applications for virtual cities, 
such as: 
- improving the planning, design and management of real cities (e.g., developers 

looking for sites for new buildings, local authorities managing urban 
infrastructure), 

- providing tourists with detailed guides 
- providing community resources for residents.  
 
 

 
Fig. 4. Virtual Ljubljana [44].  

14.2.1.5   Virtual Communities 
3D virtual communities on the Web allow a large number of users to build and 
interact among each other inside a visual 3D space. In the last years, the number of 
these 3D VEs and their users has grown steadily: for example, Alphaworld [2], one of 



the oldest multi-user 3D VEs on the Internet, has hundreds of thousands of users, is 
roughly as large as the state of California, and contains more than 60 million virtual 
objects. The main distinctive feature of this kind of 3D Web sites is that users are 
allowed to build and inhabit visual community spaces, collaboratively engaging in the 
construction of large scale spaces (including artwork, buildings and full towns) and 
other social activities, like the virtual ceremony illustrated in Figure 5. 
 

 
Fig. 5. Social activity in a multi-user 3D VE: wedding in Alphaworld [2]. 

14.2.2   Available Web3D Technologies 

The history of 3D Web sites begins in 1995 with the birth of VRML (Virtual Reality 
Modeling Language), which is still the most known and used technology for building 
and delivering 3D Web content. More specifically, VRML is an open ISO standard 
[46] for a file format and corresponding run-time behavior to describe interactive 3D 
objects and 3D VEs delivered through the Web.  

Recently, a new ISO standard, called eXtensible 3D Graphics (X3D) [49], has been 
proposed as a successor of VRML. Both VRML and X3D are managed by the 
Web3D Consortium [41], and result from the effort of several organizations, 
researchers and developers worldwide. Parts of VRML and X3D have been also 
integrated into the MPEG-4 standard [34], which adopts most of their concepts and 
instructions to describe interactive multimedia content that includes 3D objects and 
3D VEs.  

Access to VRML/X3D Web content is possible through one of the available Web 
browser plug-ins, such as (at the time of writing this Chapter) Parallelgraphics 
Cortona [37], Bitmanagement Contact [3], Octaga Player [35], and Mediamachines 
Flux [33].   



Besides open ISO standards, there are many other (non-standardized) technologies 
for 3D on the Web. The best known examples are probably Java3D [29], an extension 
of the Java language for building 3D applications and applets and Shockwave 3D [32] 
from Macromedia. Although most of these technologies can be effectively used to 
build 3D Web content, in this paper we will focus on open Web3D standards. In 
general, open standards allow for lower costs, easier reusability of content, and easier 
integration with existing and future content and applications. In the following, we 
briefly describe the main technical features of VRML and X3D, referring the reader 
to published books and manuals for complete and detailed explanations. 

14.2.2.1   The Virtual Reality Modeling Language (VRML) 
The idea of a language for building 3D content for the Web originated back in 1994, 
when Mark Pesce and Tony Parisi built an early prototype of a 3D browser for the 
Web, called Labyrinth. Later that year, at the Second International Conference on the 
World Wide Web, the first specification of VRML was published. In the following 
years, the language underwent a series of improvements, leading to version 2.0, which 
was published as an ISO standard in 1997 with the name VRML97 [46]. 

VRML is a language that integrates 3D graphics, 2D graphics, text, and 
multimedia into a coherent model, and combines them with scripting and network 
capabilities [10]. The language includes most of the common primitives used in 3D 
applications, such as geometry, light sources, viewpoints, animation, material 
properties, and texture mapping.  

From a more technical point of view, VRML documents are text files that describe 
3D objects and 3D VEs using a hierarchical scene graph (i.e., a directed acyclic 
graph). Entities in the scene graph are called nodes. VRML defines 54 different node 
types, including geometry primitives, appearance properties, sound and video, and 
nodes for animation and interactivity. For example, hyperlinks are implemented in 
VRML using the Anchor node, through which clicking on a 3D object has the effect 
of retrieving the resource at a specific URL.  

Nodes store their properties in fields; the language defines 20 different types of 
fields that can be used to store different types of data, from single integers to arrays of 
3D rotations. It is also possible for the programmer to define new nodes (i.e., extend 
the language) using a mechanism called prototyping through a statement called 
Proto. For example, this mechanism has been used to extend VRML with nodes to 
represent and animate 3D humanoids [28] and to implement distributed simulations in 
multi-user, networked 3D VEs [8]. 

VRML defines a message-passing mechanism that allows nodes in the scene graph 
to communicate with each other by sending events. This mechanism, together with 
special types of nodes, called sensors and interpolators, enables user interaction and 
animation. For example, the TimeSensor node generates temporal events as time 
passes and is the basis for all animated behaviors. Interpolators nodes are then able to 
continuously translate temporal events into data needed for animation. For example, 
the PositionInterpolator node is able to translate temporal events into 3D 
coordinates, allowing one to move objects in space. Other sensors are useful in 
managing user interaction, by generating events as the user moves through the 3D VE 
or when the user interacts with some input device (e.g. mouse pointing or clicking). 



For example, the ProximitySensor node is able to detect the user’s position in 
the 3D VE, while the TouchSensor node is able to detect mouse clicks on 3D 
objects. 

More complex behaviors (such as realistic physics simulation) can be implemented 
by using Script nodes, that allow one to manage VRML nodes with programs 
written in Java or JavaScript.  

14.2.2.2   eXtensible 3D (X3D) 
The eXtensible 3D (X3D) language for defining interactive 3D Web content was 
recently released as the successor of VRML, and was approved in 2004 as an ISO 
standard [49]. X3D inherits most of the design choices and technical features of 
VRML described in the previous section. As a result, it is mostly backward-
compatible, that is, many VRML files require only minimal changes for translation to 
X3D.  

X3D improves upon VRML mainly in three areas. First, it adds new nodes and 
capabilities, mostly to support advances in 3D graphics techniques and hardware, 
such as programmable shaders and multi-texturing. Second, it introduces additional 
data encoding formats. More specifically, it is possible to represent, store and transmit 
X3D content using a VRML-like textual encoding, an XML-based textual encoding, 
and a binary encoding, that enables better data compression and thus faster 
downloads. Third, similarly to XHTML, it divides the language into functional areas 
called components, which can be combined to form different profiles (i.e., subsets of 
the entire language) that are suited to specific classes of applications or devices. For 
example, this feature would enable one to create a specific profile to take into account 
the limited capabilities of mobile devices.  

14.3   Adaptivity for 3D Web sites 

In Web-based hypermedia, which is the mainstream model in today’s Web, 
information is organized and presented into (a graph of connected) pages using 
various media, with text being the main form of content/medium. Users interact with 
information mainly by reading, filling forms (e.g., using search engines), and 
navigating from one page to another by selecting the desired link from those 
contained in the current page. Many approaches to Web adaptivity presented in this 
book are targeted towards this model. For example, most techniques for adaptive 
content presentation discussed in Chapter 7 of this book [9] work with pages and 
textual content.  

The 3D Web model is more complex than Web-based hypermedia, as Table 1 
shows. In general, multimedia information, which can include 3D models, images, 
text, and audio, is organized and presented into a 3D space (or even in multiple 3D 
spaces connected by hyperlinks), following an arbitrarily complex spatial 
arrangement, such as a building or an entire city. Users navigate 3D space by 
controlling the position of their viewpoint through mouse, keyboard, or, more rarely, 
3D pointing devices, and sometimes have the ability to teleport from place to place or 
to other 3D Web sites. As in Web pages, users can exploit hyperlinks to reach other 



Web resources. Besides navigation, additional interaction possibilities include the 
manipulation of 3D objects (e.g., clicking them to perform an action, moving them in 
space) and even building new objects.  

Given these conceptual differences, it is not surprising that the techniques and tools 
for adaptivity in Web-based hypermedia cannot be straightforwardly applied to 
personalize 3D Web content, navigation and presentation. As mentioned above, most 
adaptive hypermedia techniques have been developed for content organized in pages 
(and not in a 3D space) and mainly made up of text (which is not the prevalent 
medium in 3D Web sites). With respect to adaptive navigation support, for example, 
link manipulation as presented in Chapter 8 of this book [5] could accommodate only 
navigation through hyperlinks in 3D VEs. Moreover, there are also technical 
differences to be taken into account, namely different file formats. Therefore, 
alternative techniques, or modifications of existing ones, needs to be developed for 
adaptivity in 3D Web sites.  

In the following, we will describe these techniques, highlighting the main 
differences with respect to their Web-based hypermedia counterparts. To make 
practical comparisons, we will use AHA! [22] (also discussed in Chapter 1 [7] and 
Chapter 13 [9] of this book) as a representative example of Web-based hypermedia 
adaptive systems. First, we will discuss how to build and update the user model, i.e., 
the modeling task, and then how to deliver personalized 3D content, i.e., the 
adaptation task.  

Table 1. Analogies and differences between Web-based hypermedia and 3D Web sites 

 Web-based hypermedia 3D Web sites 
 

presentation container 
 

page 
 

3D space 
 

content media 
 

mainly text, but also 
images, videos, ... 
 

mainly 3D models, but 
also text, images, videos, 
... 
 

structural organization graph of pages 
 

3D space or graph of 3D 
spaces 
 

navigation 
 

through hyperlinks 
 

by moving in 3D space 
(e.g., walking, flying) and 
teleporting; also through 
hyperlinks 

other common users’ 
activities 

reading pages, filling 
forms 

3D object manipulation 
(clicking, moving, …), 

 



14.3.1   Modeling 

The approaches to adaptive 3D Web content developed so far have reused standard 
user model representation and reasoning techniques, such as stereotypes, graphs of 
concepts, and inference rules. Those techniques indeed are not specific to the 
hypermedia model. However, the task of user model acquisition (building and 
updating the model) requires a different approach in 3D Web sites.  

With adaptive Web-based hypermedia, user model updates are typically triggered 
each time the browser requests a page. For example, in AHA! the adaptation engine 
starts by executing the rules associated with the attribute access of the requested page. 
Then, the user model is updated assuming that the requested page will be read, for 
example increasing the user’s knowledge level about the concepts described in the 
page. This technique is effective under the assumption that the user will fully read the 
page, or, in other words, that all content accessed from the server will be read by the 
user. This is a strong assumption, since the user might skip parts of the page and thus 
cause inappropriate updates to the user model, but there are no easy methods to track 
which parts of a page have been actually read. Although there are available 
techniques for this purpose, such as eye tracking, they are costly or unpractical to 
adopt for Web sites and their visitors, except in special situations such as marketing 
research. 

With 3D Web sites, assuming that all content accessed from the server is going to 
be seen or properly employed by the user is even more likely to cause erroneous user 
model updates. In many cases, users see only a part of the downloaded content (3D 
models, images, …) that constitutes the 3D VE, for example because exploring a 
large or complex environment can require hours. Even in a smaller 3D VE, users 
might not see some objects because they are occluded by other objects (from the 
user’s path during the visit) or simply do not notice them while navigating. Moreover, 
when some object manipulation is possible, users might not perform it or do it in 
unexpected ways. For example, in a medical training application where the trainee is 
required to virtually perform a certain sequence of actions with virtual medical tools, 
one would like to update the user model according to how actions were actually 
performed.  

A solution proposed [16, 17] consists in closely monitoring users’ behavior in the 
3D VE, and send relevant time-stamped users’ actions (e.g., movements, objects 
clicked) to the server, where they can trigger user model updates. In this way, we can 
update the user model not when content is accessed from the server, but only when 
we are confident the user has actually seen it or interacted with it. For example, by 
recording user’s position in the 3D VE every few seconds and sending it to the server, 
it is possible to know which parts of the environment were actually visited and update 
the user model accordingly. 

This approach does not require much implementation effort or special hardware 
because most Web3D technologies include mechanisms (called sensors in VRML and 
X3D, see Section 14.2.2) to monitor low-level events, such as mouse movements, as 
they are necessary for interactivity. Relevant interaction data gathered through sensors 
can be collected and sent to the server through programs (e.g., VRML Script nodes). 
For example, such technique has been used:  



- to monitor user’s position in 3D space, and determine which parts of the 3D VE 
have been actually visited,  

- to check whether the virtual head of the user is oriented towards a certain 3D 
object, and determine whether the object might have been actually seen by the 
user (e.g., considering distance),  

- to check whether and how a certain 3D object has been clicked or dragged by 
the user, and determine whether a certain action has been properly performed.  

A more detailed technical explanation of the proposed solution, in the case of 
VRML-based 3D Web sites, is presented in Sections 14.4.1 and 14.5.2.  

14.3.2   Adaptation 

In this section, we discuss techniques for adaptive navigation support and adaptive 
presentation of content in 3D Web sites. A general issue concerns how frequently 
adaptation can and should be made. With adaptive Web-based hypermedia, adaptation 
is normally performed on each requested page, although it might be desirable, for 
some content, to reduce the frequency of the adaptation process, for example once per 
session [22]. However, since users typically read one page at a time, adapting each 
requested page enables them to see the effects of adaptation during a browsing session 
and at the right time.  

So far, the approaches to adaptive 3D Web sites have adopted a similar solution, 
i.e., adaptation is performed when 3D content is requested from the server [17,21]. 
However, in the typical situation where the full 3D VE is downloaded at the 
beginning of the user’s visit, with this solution only adaptations between visits are 
possible. For example, an adaptive 3D virtual store where all content (store building, 
3D models of products, advertisement banners) is downloaded at the beginning of the 
user’s visit does not allow the user to see adaptations taking into account which 
products have been more examined since the beginning of the visit.  

With most Web3D technologies, one can however download or update parts of the 
3D VE during the user’s visit. For example, both VRML and X3D provide this 
possibility, but developers are required to write ad-hoc scripts. Alternatively, there are 
extensions to VRML, such as X-VRML [48], that provide easier mechanisms to 
implement updates or downloads of content during visits, and thus carry out 
adaptations during visits. A simple but effective example of this strategy has been 
used in a 3D virtual museum [13]. The museum features a virtual human acting as a 
guide, leading the user around and describing museum items using speech synthesis. 
Each time an item needs to be presented, the text to be spoken is requested to the 
server, where it is tailored according to the user model, and then downloaded and fed 
to the speech synthesizer. 

In general, which kinds of adaptations are best suited during visits, and their 
optimal frequency, are open issues. Typically, user’s experience of 3D VEs should be 
as continuous as possible to maintain user engagement, while in Web-based 
hypermedia adaptive changes among pages are not (or much less) perceived as 
annoying breakdowns since the experience is already ‘divided into pages’. For 
example, modifying the position, appearance or behavior of visible objects while the 
user is visiting the 3D VE, even if the user model would suggest to do so, should be 



carefully performed, otherwise it will likely turn out as annoying or counter-
productive for the user’s experience. In the following, we first discuss how to 
adaptively support navigation and interaction, and then how to adaptively present 3D 
content. Finally, in Section 14.3.2.3, we consider adaptivity in the context of multi-
user 3D VEs. 

14.3.2.1   Adaptive Navigation and Interaction Support 
Although Web-based hypermedia and 3D VEs are different, they are both targeted for 
user-driven navigation and exploration [27]. Like in the case of Web-based 
hypermedia, it seems thus interesting to develop adaptive navigation and interaction 
support techniques that can help users in finding and using information more 
efficiently, and prevent navigation and interaction problems. Moreover, navigation is 
a very relevant usability issue in the context of 3D VEs. In current 3D VEs, people 
often become disoriented and tend to get lost, and these problems are exacerbated by 
difficulties such as controlling movements in a 3D space, and limited field of view 
compared to the real-world experience. Inadequate navigation support is likely to 
result in users taking wrong directions, leaving the 3D VE before reaching their 
targets of interest, or with the feeling of not having adequately explored the visited 3D 
VE. These problems become even more critical in the case of novice users, who 
might become easily frustrated in learning how to navigate.  

Although many techniques (called electronic navigation aids), such as electronic 
2D and 3D maps, have been developed to help users in navigating 3D VEs, they are 
not able to adapt to users with different navigation and interaction abilities. For this 
reason, some researchers [6] have proposed to develop adaptive navigation support 
techniques, mostly by deriving them from established methods in adaptive 
Hypermedia. 
 

 
Fig. 6. Annotation by means of flashlight (left) and arrows (right) [27]. Image courtesy Stephen 
Hughes. 

 



Hughes et al. [27] propose a number of adaptive navigation support techniques 
based on computing ideal viewpoints in the 3D VE on the basis of the user model, and 
then use them to prevent erroneous directions, disorientation or missed parts. The 
ideal viewpoints correspond to locations in the 3D VE (more specifically, positions 
and corresponding orientations in 3D space) from which objects or parts of the 3D VE 
that are interesting for the user are well visible. The idea is to constrain navigation or 
draw additional information to help the user in reaching the ideal viewpoints. The 
proposed techniques are derived from the link manipulation techniques discussed in 
Chapter 8 of this book [5]:  
- direct guidance (a strict linear order through the navigation space) computes a 

path through the 3D VE that encompasses all ideal viewpoints, and then 
automatically moves the user’s viewpoint along this path; 

- hiding (restricting the number of navigation options to a limited subset) hides all 
irrelevant orientations by letting the user move her position freely, but having the 
system dictate the orientation of the users’ virtual head to force it to fixate on 
certain objects while moving; 

- sorting (altering the order in which navigation decision are presented to the user) 
orders ideal viewpoints and let the user move freely, but, as with hiding, the 
system dictates the orientation of the users’ virtual head to force it to fixate on 
certain objects in the computed order. In this case, the user still has the possibility 
to override system decisions and orient the virtual head to explore other objects; 

- annotation (displaying additional information on navigation options) displays 
attention-drawing signs, such as the arrows in the right part of Figure 6, to indicate 
interesting objects, or highlights them using a flashlight while unimportant 
features are left in the dark as in the left part of Figure 6. 

An alternative approach [12,16] to implement sorting and annotation-like adaptive 
support exploits virtual characters, such as the ones in Figure 7 and Figure 14, that act 
as navigation guides to:  
- show users the path to an object, or the path through a sorted list of objects of 

interest, i.e. implementing sorting-like navigation support; 
- provide annotations in the form of additional information on navigation and 

interaction possibilities; for example, the virtual character in Figure 7 is showing a 
new user that an object can be opened to see its interior. 

This style of adaptive support has been employed in two different contexts. In a 3D 
virtual museum [12], the virtual character acts as the museum guide, leading the user 
around, giving information on museum items and showing possible interactions. The 
first time the user visits the museum, a sequence of museum items (i.e., a museum 
tour) is generated on the basis of the user profile, and the virtual character guides the 
user through them. In successive visits, only those items that have not been seen are 
included in the tour (this has similarities with the hiding technique explained above). 
In a 3D virtual store [14,16], multiple animated characters are employed to guide the 
user to different products (this technique is described in more detail in Section 14.5). 
The animated characters look like products (see Figure 14), and their actual 
appearance (i.e., the specific product they represent) is adapted to take into account 
user’s potential buying interests.  



While using 3D virtual characters does not directly help the user in controlling 
navigation as direct guidance, hiding, and sorting, it has the following distinctive 
features: 
- it can draw the user’s attention with natural and familiar methods. For example, 

the humanoid character in Figure 7 uses gaze, pointing gestures, body orientation, 
and provides textual information through voice; 

- it may have an emotional impact on the user, and increase motivation and 
engagement: users tend to experience presentations given by animated characters 
as lively and engaging [43]. Moreover, it can make the virtual place more lively, 
attractive, and less intimidating to the user; 

- it does not restrict the navigation possibilities, since the user can choose whether 
to employ adaptive support or not by not following the virtual character and 
explore the 3D VE on its own. 

 
 

 
Fig. 7. A humanoid character shows the user how an object can be opened [12] 

Another kind of adaptive navigation and interaction support has been proposed by 
Celentano and Pittarello [11]. Their idea is to monitor user’s behavior and to exploit 
the acquired knowledge for anticipating user’s needs in forthcoming interactions. 
More specifically, the approach is based on using sensors (as described in Section 
14.3.1) to collect usage data, and compare them with previous patterns of interaction 
stored in the user profile. The patterns of interaction are sequences of activities which 
the user performs in some specific situation during the interactive execution of a task, 



and are encoded as Finite State Machines (FSM). Whenever the system detects that 
the user is entering a recurrent pattern of interaction, it may perform some activities of 
that pattern on behalf of the user. For example, figure 8 shows an example of 
interaction adaptation in a virtual fair application. The FSM on the top of the Figure 
shows the sequence of actions that must be performed to interact with an object inside 
a showcase. The FSM on the bottom of the Figure is computed by the interaction 
support system after the first FSM has been detected as recurring. In the FSM in 
Figure 8, the dotted arrow represents an automatic execution of actions performed by 
the system. More specifically, if the user is closer than 3 meters from the showcase, 
the open button, even if it is not visible, is automatically pressed to open the showcase 
on behalf of the user. 

 

 
Fig. 8. Interaction adaptation in a virtual fair application [11]. Image courtesy Fabio Pittarello. 

14.3.2.2   Adaptive Presentation of Content 
Adaptive presentation of content concerns deciding what content is most relevant to 
the user, how to structure it in a coherent way, and how to present it in the best way. 
For the first two tasks, the most widely used techniques in Web-based hypermedia are 
optional fragments and altering fragments. As mentioned in Chapter 7 of this book 
[9], those techniques build adaptive pages by selecting and combining an appropriate 
set of fragments, where each fragment typically corresponds to a self-contained 
information element, such as text paragraphs or pictures. 

The techniques for adaptive presentation of 3D content developed so far follow the 
same fragment-based approach, and can therefore be thought as variations of the 
above mentioned adaptation approaches.  

The approach proposed in [17] uses the VRML PROTO construct to define each 
kind of self-contained adaptive fragment. In general, PROTO defines a new VRML 
node by specifying its interface, i.e. fields and events the node receives and sends, 
and its body, i.e. how the node is implemented in terms of existing or previously 
defined VRML nodes. As with any other VRML node, each time the new node is 
inserted, or instantiated, in the 3D VE, one can change the values of the fields 



declared in the interface to customize the features of the node. For example, the 
following code defines a very simple node for a box-shaped product in a 3D store, 
where the size of the box and the image printed on its sides are encoded as fields: 

 
PROTO BoxProduct  
[ field SFVec3f bsize 0 0 0   // size of the box in x, y, z 
  field MFString imageURL [] // url of image that will appear on the box   

  ] 
{  
   Shape {                   // node to define a 3D object 
   appearance Appearance {   // appearance of the 3D object  
 texture ImageTexture {   
   url IS imageURL }  // applies the image to the box 
   } 
   geometry Box {     // the geometry of the 3D object is defined by a box 
 size is bsize } // size of the box  
  } 
}   
    
 The idea is that fields in the interface define the adaptive features of the node, 

abstracting from other non-adaptive details. In the product example, therefore, the 
adaptive features are the size of the box, and the image printed on its sides. With this 
approach, 3D adaptive content is defined by a set of BoxProduct node 
instantiations, such as in the following code fragment, which includes a milk box in a 
3D VE: 

 
 BoxProduct { 
 bsize 1 2 1 
 imageURL “milkBox.jpg” 
} 
 

The idea  is that field values (such as “milkBox.jpg”) are chosen among a set of 
alternatives (that have to be stored separately) or computed by the adaptive engine 
when content is requested.  

 The alternative technique proposed in [15] for the X3D language does not uses a 
prototyping mechanism (which is available also with X3D), but requires an additional 
file, called Content Personalization Specification (CPS), for each X3D document with 
adaptive content. The CPS file defines adaptive features and may also specify 
possible variants. With this technique, the milk box example above would be 
implemented by the following X3D code fragment: 

 
 <Shape> 
   <Box DEF=”size1” /> 
   <Appearance> 
     <ImageTexture DEF=”imgUrl1” /> 
   </Appearance> 
 </Shape>   
  



and a separate CPS file specifying that the size of the box and the image on its side 
are adaptive features. The following CPS does that, also defining two possible actual 
adaptations for the product image: 

 
<CPS>  
   <adaptiveContent DEF="imgUrl1" attribute="url"> 
  <value>"milkBox.jpg"</value>   
   <value>"cerealBox.jpg"</value> 
   <adaptiveContent DEF="size1" attribute="size"/>  
</CPS> 
 

One of the advantages of using XML-encoded content (such as X3D) is the 
possibility of using adaptation techniques developed for other kinds of XML-based 
content. For example, the approach proposed by Dachselt et al. [21] uses the Amacont 
general-purpose architecture [25] with X3D content or more high-level formats [20]. 
For example, the fact that the image printed on the sides of the box-shaped product is 
an adaptive parameter would be expressed in the approach of Dachselt et al. by the 
following code fragment, which, contrary to the techniques above, includes also the 
logic of adaptation: 

 
<Parameter name="url" dataType="CoAnyURI" ... >  
 <Variants>  
  <Logic>  
   <If>  
    <Expr>  

 <Term type="=">  
      <UserParam>Favorite Product</UserParam>  
      <Const>Milk</Const>  
     </Term>  
    </Expr>  
    <Then>  
      <ChooseVariant>milk</ChooseVariant>  
    </Then>  
    <Else>  
     <ChooseVariant>cereals</ChooseVariant>  
    </Else>  
   </If>  
  </Logic>  
  <Variant name="milk">  
    <CoAnyURI>"milkBox.jpg"</CoAnyURIs>  
  <Variant>  
  <Variant name="cereals">  
   <CoAnyURIs>"cerealsBox.jpg"</CoAnyURIs>  
  </Variant>  
 </Variants>  
</Parameter> 
 



The Parameter element encodes an adaptive feature (in this case, an image 
depicting a product). The enclosed Variants element define possible variants for 
the feature. Inside the Variants element, a Logic element defines the logic of 
adaptation (if the user’s favorite product is milk, we will use the milk variant, else 
we will use the cereals variant. Then, a list of Variant elements defines the 
possible variants as URLs of the images. 

While these approaches provide fragment-based techniques to perform adaptation 
of content, using them is not as easy as in Web-based hypermedia. Text fragments or 
images can be simply juxtaposed in a page, with the only possible drawback of not 
preserving a good graphic layout. On the contrary, special care has to be taken in the 
case of 3D content to preserve a meaningful and understandable 3D space. Once 
relevant fragments have been chosen, one needs to properly arrange them in 3D space 
and time (if there are animations) such as, for example, included objects do not 
intersect each other, are adequately visible from the positions the user will take in 
space, and free space is enough for the user to move. Unfortunately, it is very difficult 
to develop general algorithms for this purpose. This forces one to limit the space of 
possible adaptations to a few variants that are guaranteed to be safe with respect to the 
above mentioned constraints, or to implement adaptation strategies that might work 
only in a specific 3D VE.  

 

 
Fig. 9. On the left, a ring menu for choosing a chair; on the right, the same menu adapted for 
smaller displays, such as PDAs [21] Image courtesy Raimund Dachselt. 

Even if one could easily implement any kind of adaptation, there are presently no 
studies that investigate the effect on users of content adaptation in 3D VEs. Therefore, 
we can only try to hypothesize which adaptations might be useful and which might be 
counterproductive. For example, it is likely that changes in the navigational structure 
of a 3D VE will disorient the user and will make it much harder to learn how to 
navigate the environment. Therefore, structural changes need to be chosen carefully 



and be limited in scope and frequency. In the following, we mention some examples 
of adaptations of 3D content that have been proposed in the literature.  

In the adaptive 3D e-commerce example we will discuss in Section 14.5, the 
number of instances of products in shelves can vary in a given range (one to four) to 
adaptively increase or decrease the visibility of the product itself (see Figure 15). The 
limited number of variants guarantees that each product will not take the space 
reserved to other products.  

 

 
Fig. 10. Web site for adjusting the seating capacity of conference rooms Image 
courtesy Raimund Dachselt. 
 

A 3D adaptive e-learning system [24] organizes learning content into a building 
made of rooms, and the adaptation engine places rooms (by just exchanging content 
among equally-sized rooms) that correspond to the areas of higher user's interest 
before rooms whose contents are less interesting for the user.  

The 3D menus shown in Figure 9 [21] are examples of adaptation to the user’s 
device. The idea is to provide different alternatives, with respect to screen space 
usage, for the same 3D interface element and information presented. In particular, the 
screenshot on the right shows a smaller-sized version of the ring menu on the left, and 
is better suited to small displays, such as PDAs.  

Finally, 3D content could also be considered in media adaptation. Figures 10 and 
11 shows two different versions of the same Web site, whose purpose is to adjust the 
seating capacity of conference rooms [21]. Figure 10 shows an HTML-based version, 



which might be more suited to low-bandwidth connections or users that are not 
familiar with 3D. Figure 11 shows a 3D-based version, where the conference room is 
represented by a 3D VE to better visualize the final result.  
 

 
Fig. 11. Adapted version of the content in Figure 10, using a VRML 3D VE Image courtesy 
Raimund Dachselt. 

14.3.2.3   Multi-User 3D VEs 
No examples of adaptivity in multi-user 3D VEs have been reported in the literature. 
This might be due to the fact that multi-user 3D VEs can conflict with personalization 
aspects, making some of the adaptations presented in the previous section 
troublesome. In general, if multiple users navigate and interact together in the same 
3D VE, adaptation of content cannot safely target the specific profile of a single user. 
For example, adaptations that cause one person to see the 3D VE differently from 
others could cause deep misunderstandings (e.g., a reference to a highlighted object 
that is not highlighted for another person) that may hinder social activities.  

There are however strategies that could be pursued to prevent this kind of 
problems. For adaptations that conflict with multi-user activities, one could try to find 
the best common adaptation which maximizes the match with the different user 
models. However, considering that the set of users could continuously change, this 
might not be easy to implement. A second possibility could be to clearly mark what is 
personalized in the 3D VE, and see if users are able to adopt new conventions. 



Another possibility would be to find useful adaptations that do not conflict with multi-
user activities, or even result from them. For example, an idea that has been 
developed for adaptive multi-user textual environments is to change the description of 
objects in the environment to reflect usage [23], such as doors or books showing signs 
of wear. A similar idea could be used in a multi-user 3D VE to visually represent 
frequently accessed paths or objects. 

14.4   A Generic Software Architecture for Adaptive 3D Web sites 

A few software architectures for adaptive 3D Web sites can be found in the literature. 
The AWe3D (Adaptive Web 3D) architecture [17] is a general purpose architecture 
for generating and delivering adaptive VRML content which was proposed in 2002. 
More recently, a few researchers [15,21] have focused on integrating 3D content into 
existing technologies, such as the Amacont general-purpose architecture [25], for 
Web adaptivity.   

In the following, we describe a generic architecture (depicted in Figure 12) that 
generalizes the ideas of AWe3D, for delivering adaptive content in 3D Web sites. The 
architecture is composed by the following modules: 
- a Usage Data Sensing module, whose purpose is to monitor user’s interaction with 

the 3D VE, and send the relevant events through the Internet. This module is 
located on the client side, run by the user’s browser; 

- a Usage Data Recorder module, whose purpose is to receive, on the server side, 
the events sent by the Usage Data Sensing module, and record them in the User 
Model Database;  

- an Adaptivity Engine, that: (i) performs inferences needed to update the user 
model on the basis of recorded usage data, and (ii) given the current user model, 
computes a set of adaptation choices for requested adaptive content;  

- a 3D Content Creator module, that: (i) accepts content requests from the client; 
(ii) when adaptive content is requested, asks the Adaptivity Engine to provide the 
correct adaptation choices, and uses them to build the adapted 3D content, 
retrieving needed files (3D models, images, sounds,…) from the 3D Content 
Database; (iii) delivers the requested 3D content to the client. 

We now describe in more detail a possible set of technical choices to implement 
each module in the case of VRML-based 3D Web sites.  
 



 
Fig. 12. Schema of a general architecture for adaptive 3D Web sites  

14.4.1   Usage Data Sensing  

Following the technique outlined in Section 14.3.1, this module is implemented by a 
set of VRML sensors whose output is routed to a Script node, which transmits 
relevant usage events to the Usage Data Recorder module by using a HTTP 
connection.  

 The type, number and specific settings of VRML sensors in this module depend 
on the type and number of usage data that needs to be collected for a specific 
application. In the simplest case, one would need one sensor for each event that has to 
be sensed. VRML sensors allow one to track the user’s position, or user’s collisions 
with an object, or mouse actions on an object, or visibility of an object. By combining 
the output of multiple sensors in a Script node, one can obtain higher level sensing of 
the user’s actions: for example, a complex action that requires a sequence of clicks 
and drags can be monitored by using appropriate sensors to detect these low-level 
events, and a Script node that receives the sensors’ output, recognizes the correct 
sequence, and send the resulting high-level event to the server.    

14.4.2   Usage Data Recorder  

The Usage Data Recorder is implemented by a simple server-side program that 
receives usage data and stores them with a DBMS. A more elaborate version could 
also perform calculations on the usage data before storing, for example filtering, 
averaging, sums, …  



14.4.3   3D Content Creator Module 

The 3D Content Creator receives requests for 3D content, and returns that content to 
the client. Adaptive fragments are represented through VRML PROTO constructs 
(using the technique illustrated in Section 14.3.2.2), whose fields encode the adaptive 
features, such as object geometry, color, and size. The 3D Content Creator Module 
asks the Adaptivity Engine to compute actual values for each PROTO field (i.e., a set 
of adaptation choices), and use the result to instantiate the PROTO in the file that is 
returned to the client, possibly retrieving needed code (such as 3D models, 
animations, and images) from the 3D Content Database.   

14.4.4   Adaptivity Engine 

The technical choices that have to be taken in implementing the Adaptivity Engine 
depend on how complex are the inferences that have to be performed. A simple 
solution, using a rule-based approach, is to write a set of User Model Update rules to 
update the user model on the basis of collected usage data, and a set of Content 
Adaptation rules to compute personalized field values for adaptive content. The User 
Model Update rules can be activated each time usage data are received from the 
client, or periodically, at given intervals of time or after a certain number of user’s 
visits to the Web site. The Content Adaptation Rules are activated each time the 3D 
Content creator asks for personalized versions of adaptive fragments.  

14.5   An Application in E-Commerce 

In the following, we describe a detailed example in the domain of e-commerce 
implemented using the architecture introduced in the previous section. We first 
describe the considered 3D store, then we discuss specific technical choices to 
implement an adaptive version of it. The example we propose is a simplified version 
of the 3D adaptive store presented in [17], to which we refer the reader for more 
detailed technical specifications and code examples. 

14.5.1   A 3D Store VE  

The 3D VE we consider is composed by a 3D model of a department store, displaying 
products on several shelves. The customer can wander through the store, obtain 
information on products by clicking on them, put them in the cart, which is also 
represented in 3D (see Figure 13), and go to the checkout counter to conclude her 
shopping session. Besides shelves, customers’ attention towards products is sought by 
exploiting special rotating display spots in prominent places, advertisements on the 
walls, and audio messages. Moreover, the store is populated by Walking Products 
(WPs, see Figure 14), a navigation support feature to help users in finding products 
[14]. WPs are 3D animated representations of products that move through the store 
and walk to the place where the corresponding type of products is. A customer in the 



3D store sees a number of WPs wandering around: if she is looking for a specific type 
of products, she has just to follow any WP of that type and will be quickly and easily 
lead to the desired destination.  
 

 
Fig. 13. A 3D store with products on shelves 

 
Fig. 14. Example of a Walking Product 

14.5.2   Usage Data Sensing and Recording 

Usage data we are interested in concern typical interactions with products in the store. 
More specifically, the data collected by the Usage Data Sensing module by 
monitoring customer’s actions are: 
- Seen Products. While the customer wanders around the store, she voluntarily or 

involuntarily looks at the products which fall in her field of view; 
- Clicked Products. When the customer wants to know more about a product, she 

clicks on it to get the product description; 



- Cart Products. The product description allows the customer to put the product in 
the shopping cart for a possible later purchase;  

- Purchased Products. A product in the cart can be later purchased by going to the 
checkout counter. 

Seen Products and Clicked Products data are acquired through Visibility and 
Touch sensors associated to each product. The following is a slightly simplified 
PROTO defining a product node with the required sensing capabilities: 

 
PROTO Product  
[  field MFNode product3DModel [] 
   eventOut SFTime productSeen 

     eventOut SFTime productClicked  ] 
{  
   Group { children IS product3DModel }   
    
   TouchSensor  {  
        touchTime IS productClicked } 
    
   VisibilitySensor { 
        enterTime IS productSeen } 

  }       
 
 

The interface of the node Product (the first three lines after the PROTO 
statement) include a field for the 3D model of the product (product3DModel), and 
two events that can be sent to other nodes, respectively indicating when the product is 
seen (productSeen) and clicked (productClicked). The Product3DModel 
field is an adaptive feature of the product: its 3D model can be chosen among 
different alternatives, for example to occupy less or more space in shelves, as shown 
in Figure 15. The body of the node Product (the code between braces) includes a 
reference to the 3D Model of the product, a Touch Sensor to detect click events, and a 
Visibility Sensor to detect when the product is visible. 

 In similar ways, Cart Products and Purchased Products data is acquired in the 
VRML code describing the cart and the checkout counter, respectively.   

14.5.3   User Model 

Customer models in the User Model Database of the 3D store contain the following 
information: 
- demographic data, including gender, year of birth, and product categories of 

interest among those available in the store, which the customer can enter through 
an HTML form the first time she enters the store; 

- user preferences about the store, such as presence of audio and music, and 
preferred music genre, which are also entered or modified by the user through 
the HTML form; 

- usage data, described in the previous section, and exploited to dynamically 
update the user model. Usage data allows one to obtain a precise quantitative 



measurement of which brands, product categories, specific products, price 
categories, and special offers have been respectively seen, clicked, put in the 
shopping cart or purchased by the customer; 

- Product Interest Ranking, which ranks products and products categories 
according to customer’s interests. 

To determine the Product Interest Ranking, an initial value is determined by using 
a HTML form that allows the customer to indicate her products of interests: if she 
chooses to fill it, the information is used to initialize the ranking. If the customer does 
not provide product interests in the HTML form, one can try to predict interests by 
using demographic profiles. Then, regardless of the quality of the initial value, 
product interests will be continuously updated by the Adaptivity Engine which 
exploits usage data: each purchase, cart insertion, and click of a product increases 
(with different weights) the level of interest in the corresponding product and product 
category or in related products. 

14.5.4   3D Store Adaptivity 

The adaptive features of the 3D store mainly concern where and how products are 
displayed:  
- each product is displayed in the shelf assigned to its product category, but the 

amount of shelf space devoted to the product is adaptively changed to increase or 
decrease product visibility; 

- additionally, a product may appear also in display spots, banners, or WPs to 
increase its exposure towards the user. 

Other adaptive features concern the music that is played, and the audio messages 
that advertise products.  

In the following, we present some examples of rules that perform adaptations in the 
3D store. Simple rules are given by the direct associations between user’s preferences 
about presence of music and preferred genres, and songs that are played during visit. 
More complex examples concern the exploitation of the user model to change the 
level of product exposure in the 3D store. The level of exposure of each product can 
vary the product visibility and attractiveness, for example by increasing space devoted 
to the product in the store or adding banners advertising the product. We call 
ExposureLevel(X) the parameter which represents the level of exposure for product X. 
The value of ExposureLevel(X) is determined by five more specific parameters:  
- ShelfSpace(X) indicates the space assigned to product X on the shelf. It can take 

four different values: higher values make X more visible to the customer, 
increasing ExposureLevel(X). The products in Figure 15 show two different 
allocations of shelf space; 

- DisplaySpot(X) is false if product X is displayed only on its shelf, while it is true if 
product X is displayed also in a separate display spot in a prominent place (we 
could have also used numerical values to allow the same product to be displayed 
on more than one display spot); 

- Banner(X) is true if there is a banner advertising product X in the store; 
- AudioMessage(X) is true if audio advertisements for product X are played; 
- WP(X) is true if there is a WP representing product X in the store. 



A true value for any of the last four boolean parameters increases 
ExposureLevel(X). Personalization rules first suggest changes to exposure level by 
asserting increase or decrease goals for specific products. Then, they focus on 
achieving those goals, by changing one or more of the above described parameters, 
according to the availability of store resources (e.g., if a shelf is full, shelf space for 
products cannot be increased on that shelf).  
 

         
Fig. 15. Two different possible allocations of shelf space for the same product 

We now examine some specific rules and how they relate to the information 
recorded in the user model. Suppose that a product X has never been seen by the 
customer or that changes in the Product Interest Ranking show an increasing attention 
towards the product. In both cases, a seller would like to increase the exposure of the 
product (in the first case, to give the customer the opportunity of seeing the product; 
in the second case, to better match customer interests). The rules that implement the 
two cases can be expressed as follows, where seen(X) is the recorded number of 
times a product has been seen, ProductInterest(X) is the rank in the product 
interest ranking, and NumberOfVisits is the number of times the user has visited 
the store: 
 
IF seen(X)=0 AND NumberOfVisits>3 THEN 
 goal(IncreaseExposureLevel(X)) 
 
IF increasing(ProductInterest(X)) THEN 
 goal(IncreaseExposureLevel(X)) 

 
As another example, consider the cross-sell case where the purchase of a specific 

product X is an indicator of a likely future interest for related products and we want to 
update the user model accordingly. For example, if a customer buys a computer and 
has never purchased a printer, she could be soon interested in a printer. The rule can 
be expressed as follows, where purchased(X) is the recorded number of times a 
product has been purchased, lastVisit extracts the value of data considering only 
the last visit to the store, and RelatedProduct(X,Y) relates products by using 
associations provided by the seller: 
 
IF lastVisit(purchased(X))>0 AND RelatedProduct(X,Y)  
AND purchased(Y)=0 THEN increase(ProductInterest(Y)) 

 



As an effect of the increased product interest, the second rule examined above will 
then suggest an increase in the exposure level of related products which have not been 
purchased yet. Note that the RelatedProduct relation cannot be used transitively, 
because this could lead to counterproductive merchandising strategies. For example, 
an ink cartridge is obviously related to a printer, and a printer is obviously related to a 
computer, but it does not make sense to increase the exposure level of ink cartridges if 
a customer has purchased a computer but not a printer. 

Finally, to prevent an excessive number of changes to the 3D store from one 
session to another, we impose a limit on their number for any given session. The idea 
is to keep the experience of returning to the 3D store consistent with the familiar 
experience of returning to a known real-world store: the store layout remains 
essentially the same, and a limited number of changes concern what products are 
displayed, and how the attention of the customer towards those products is sought.  

14.6   Conclusions 

Adaptivity of 3D content for the Web is a very recent and largely unexplored research 
topic. As shown in Section 14.3, there are only a few examples of adaptation of 3D 
content in the literature, and no thorough evaluations with users have been carried out. 
To understand the true potential of adaptivity of 3D content, we need to explore in 
more depth the space of possible adaptations, including less obvious ones. For 
example, most 3D VEs (including those built with VRML or X3D) allow the use of 
spatial audio. An interesting possibility could be to use adaptive spatial audio to 
provide information to the user,  for example navigation support. 

It is also important to investigate users’ reactions to adaptive changes in 3D 
content. As discussed in the Chapter, adaptivity may break or hinder important 
features of a user's experience in a 3D VE, such as the construction of spatial 
knowledge, and the continuity of the experience. Studies on users are therefore 
needed to establish when and how it is useful to adaptively change a 3D VE.  

We hope that this Chapter has provided an easy-to-read introduction for students, 
as well as a stimulating starting point for researchers that aim at advancing this line of 
research. 
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