
14
Adaptive 3D Web Sites

Luca Chittaro and Roberto Ranon

HCI Lab, Dept. of Math. and Computer Science, University of Udine,
via delle Scienze 206, 33100 Udine, Italy

{chittaro, ranon}@dimi.uniud.it

Abstract. In recent years, technological developments have made it possible to
build interactive 3D models of objects and 3D Virtual Environments that can be
experienced through the Web, using common, low-cost personal computers. As
in the case of Web-based hypermedia, adaptivity can play an important role in
increasing the usefulness, effectiveness and usability of 3D Web sites, i.e., Web
sites distributing 3D content. This paper introduces the reader to the concepts,
issues and techniques of adaptive 3D Web sites.

14.1 Introduction

In recent years, technological developments have made it possible to build interactive
3D models of objects and 3D Virtual Environments (hereinafter, 3D VEs) that can be
experienced through the Web, using common, low-cost personal computers. As a
result, 3D content is increasingly employed in different Web application areas, such
as education and training [18, 30, 40], e-commerce [26, 36], architecture and tourism
[42, 44], virtual communities [2,45] and virtual museums [4].

Web sites distributing 3D content (hereinafter, we call them 3D Web sites for
simplicity) can be divided into two broad categories:
- sites that display interactive 3D models of objects embedded into Web pages, such

as e-commerce sites allowing customers to examine 3D models of products [26],
and

- sites that are mainly based on a 3D VE which is displayed inside the Web
browser, such as tourism sites allowing users to navigate inside a 3D virtual city
[44].

In the first case, the primary information structure and user’s interaction methods
are still based on the hypermedia model, with the additional possibility of inspecting
3D objects. In the second case, the primary information structure is a 3D space, within
which users move and perform various actions. For example, a furniture e-commerce
site might be based on a 3D virtual house where users can walk, choose furniture
from a catalogue, and place it in the various rooms [36].

3D Web sites are not meant to substitute the hypermedia model which is the
mainstream in today’s Web, but they can be more effective when there is added value

in interacting with a 3D visualization, or in providing a first-person virtual experience
close to a real-world one. For example, in the case of e-commerce, 3D models give
customers the ability to visually inspect, manipulate, try and customize products
before purchasing as they are accustomed to do in the real world [27]. In the case of
cultural heritage, a Web museum implemented as a 3D VE allows one not only to
display the museum items, but also to convey their "cultural setting" by placing them
in a proper environment.

As in the case of Web-based hypermedia, adaptivity can play an important role in
increasing the usefulness, effectiveness and usability of 3D Web sites. For example,
an intelligent adaptive navigation support system could help users with different
navigation abilities in finding targets, orienting themselves, and gaining spatial
knowledge of the environment. Unfortunately, there are currently no well-established
techniques or commercial tools to build adaptive 3D Web sites. Moreover, because of
conceptual and technical peculiarities of 3D Web sites, most approaches, techniques
and software tools developed for the Adaptive Web cannot be straightforwardly
applied to personalize 3D Web content, navigation and presentation. However, some
research projects have addressed the issue of adaptivity for 3D Web sites. For
example, a first software architecture [17] for dynamic construction of personalized
3D Web content has been proposed and applied to e-commerce [14,16] and virtual
museums [13]. Some researchers have developed methods for personalized navigation
support [12,27], adaptive interaction [11] and content presentation [24] in 3D VEs.
Recently, there have been some attempts at experimenting with general-purpose
frameworks for Web adaptivity to deliver personalized 3D content [15,21].

This Chapter will introduce the reader to the concepts, issues and techniques of
adaptive 3D Web sites. We will mainly focus on 3D Web sites based on 3D VEs,
since this category is the most general and complex one (but most of the techniques
we will present can be applied also to Web sites with interactive 3D objects). The
Chapter is structured as follows. Section 14.2 provides an introduction to 3D Web
sites for the novice reader, overviewing the major application areas, and mentioning
the main technologies, with a focus on standards. Section 14.3 discusses adaptivity in
the context of 3D Web sites and with respect to Web-based hypermedia, separating
the problems of modeling and adaptation. Section 14.4 describes an example of a full
generic architecture for adapting 3D Web content, which is instantiated in Section
14.5 considering a detailed example in the domain of e-commerce. Finally, Section
14.6 concludes the Chapter.

14.2 3D Web Basics

The languages, protocols and software tools that make it possible to build 3D models
and 3D VEs that can be experienced through the Web are collectively identified with
the term Web3D technologies. Nowadays, thanks to the increase in network
bandwidth and processing power (especially 3D graphics capabilities), Web3D
technologies allow a large number of users worldwide to experience complex 3D
Web content, such as virtual cities, visualizations of scientific data, or virtual
museums.

Web3D technologies are based on the basic technical and architectural choices
typical of Web technologies: content, represented in a proper (and typically textual)
format, is stored on a server, requested by a client, typically through HTTP, and
displayed by a browser, or, more often, by a plug-in for a Web browser. As a result,
3D content can be strongly integrated with other kinds of Web content, by
augmenting Web sites with 3D interactive objects (a 3D model can appear into a Web
page together with HTML content) as well as by displaying most types of Web
content (such as images, sounds, videos) inside a 3D VE accessible through the Web.
This is the main distinctive features of Web3D technologies with respect to other
kinds of interactive 3D graphics-related technologies, such as those historically
employed in Virtual Reality. Moreover, while Virtual Reality typically focuses on
immersive 3D experiences, for example employing head-mounted displays and data
gloves, 3D Web content is typically experienced with the input/output devices of
today's common personal computers (CRT or LCD monitor, keyboard and mouse).

14.2.1 Applications and Motivations

In the following, we overview the main application domains for 3D Web sites, present
possible advantages for using 3D content on the Web, and cite some available
systems.

14.2.1.1 Learning and Training
3D VEs offer the possibility to reproduce the real world or to create imaginary
worlds, providing experiences that can help people in understanding concepts as well
as learning to perform specific tasks in a safe environment. The possibility of
delivering educational 3D VEs through the Web allows one to reach potentially large
numbers of learners worldwide, at any time (see [18] for a thorough discussion of 3D
Web applications in education, learning and training). Employing 3D graphics allows
for more realistic representations of subjects or phenomena, offering the possibility of
analyzing the same subject from different points of view. Examples in medical
education [30] include 3D reconstructions of parts of the human body [47] and 3D
simulators [39], like the one shown in Figure 1. Other applications have been
developed for foreign language education [40], maintenance training [19, 37], special
needs education [31] and optics teaching [50].

Fig. 1. 3D Web medical training simulator. Image from the WebSET project, reproduced with
permission of Nigel W. John.

14.2.1.2 E-commerce and Product Visualization
Although almost all e-commerce Web sites use hypermedia-based interfaces, a few
sites have attempted to provide users also with 3D interfaces [1], allowing them to
explore a 3D VE representing a store, as in Figure 2. A 3D Web store can have some
advantages, if properly implemented:
- it is closer to the real-world shopping experience, and thus more familiar to the

customer,
- it supports customer’s natural shopping actions (such as walking, looking around

the store, picking up products,…),
- it can satisfy emotional needs of customers, by providing a more immersive and

visually attractive experience,
- it can satisfy social needs of customers, by allowing them to meet and interact

with people (e.g., other customers or salespeople).
On today’s e-commerce sites, the simple integration of interactive 3D objects into
Web pages, rather than full 3D store environments, is more common, for example in
the automotive market [26].

Fig. 2. @Mart 3D Shopping Mall [1].

14.2.1.3 Virtual Museums
Online collections of cultural information are useful if the digital representations of
physical items contain enough detail to support the needs of visitors, e.g. researchers.
Collections such as photographs or manuscripts can often be effectively acquired and
displayed with 2D digital images. However, images are less effective as surrogates for
three-dimensional items, such as sculptures, since much spatial information is lost, as
the 3D shape of an object has to be flattened onto a two-dimensional view from a
single perspective. In these cases, using 3D models can better support the needs of
virtual museums visitors.

One can also build 3D VEs that contain representations of cultural objects as well
as their contextual environment, e.g. to:
- provide a situated representation of objects;
- virtually reconstruct objects, structures and environments that have been damaged

in the past, or do not exist anymore;
- build environments that never existed physically, but represent an appropriate

conceptual or architectural environment, such as the virtual reconstruction of
Leonardo’s ideal city [4] shown in Figure 3.

Fig. 3. The virtual reconstruction of Leonardo’s ideal city [4]. Image reproduced with
permission of Thimoty Barbieri.

14.2.1.4 Architecture and Virtual Cities
Many 3D Web sites allow users to move inside 3D models of buildings and virtual
cities [42,44], sometimes providing the capability of seeing each other and chatting.
Although most of these sites, such as the one shown in Figure 4, focus on simply
reproducing real-world places, there are many possible applications for virtual cities,
such as:
- improving the planning, design and management of real cities (e.g., developers

looking for sites for new buildings, local authorities managing urban
infrastructure),

- providing tourists with detailed guides
- providing community resources for residents.

Fig. 4. Virtual Ljubljana [44].

14.2.1.5 Virtual Communities
3D virtual communities on the Web allow a large number of users to build and
interact among each other inside a visual 3D space. In the last years, the number of
these 3D VEs and their users has grown steadily: for example, Alphaworld [2], one of

the oldest multi-user 3D VEs on the Internet, has hundreds of thousands of users, is
roughly as large as the state of California, and contains more than 60 million virtual
objects. The main distinctive feature of this kind of 3D Web sites is that users are
allowed to build and inhabit visual community spaces, collaboratively engaging in the
construction of large scale spaces (including artwork, buildings and full towns) and
other social activities, like the virtual ceremony illustrated in Figure 5.

Fig. 5. Social activity in a multi-user 3D VE: wedding in Alphaworld [2].

14.2.2 Available Web3D Technologies

The history of 3D Web sites begins in 1995 with the birth of VRML (Virtual Reality
Modeling Language), which is still the most known and used technology for building
and delivering 3D Web content. More specifically, VRML is an open ISO standard
[46] for a file format and corresponding run-time behavior to describe interactive 3D
objects and 3D VEs delivered through the Web.

Recently, a new ISO standard, called eXtensible 3D Graphics (X3D) [49], has been
proposed as a successor of VRML. Both VRML and X3D are managed by the
Web3D Consortium [41], and result from the effort of several organizations,
researchers and developers worldwide. Parts of VRML and X3D have been also
integrated into the MPEG-4 standard [34], which adopts most of their concepts and
instructions to describe interactive multimedia content that includes 3D objects and
3D VEs.

Access to VRML/X3D Web content is possible through one of the available Web
browser plug-ins, such as (at the time of writing this Chapter) Parallelgraphics
Cortona [37], Bitmanagement Contact [3], Octaga Player [35], and Mediamachines
Flux [33].

Besides open ISO standards, there are many other (non-standardized) technologies
for 3D on the Web. The best known examples are probably Java3D [29], an extension
of the Java language for building 3D applications and applets and Shockwave 3D [32]
from Macromedia. Although most of these technologies can be effectively used to
build 3D Web content, in this paper we will focus on open Web3D standards. In
general, open standards allow for lower costs, easier reusability of content, and easier
integration with existing and future content and applications. In the following, we
briefly describe the main technical features of VRML and X3D, referring the reader
to published books and manuals for complete and detailed explanations.

14.2.2.1 The Virtual Reality Modeling Language (VRML)
The idea of a language for building 3D content for the Web originated back in 1994,
when Mark Pesce and Tony Parisi built an early prototype of a 3D browser for the
Web, called Labyrinth. Later that year, at the Second International Conference on the
World Wide Web, the first specification of VRML was published. In the following
years, the language underwent a series of improvements, leading to version 2.0, which
was published as an ISO standard in 1997 with the name VRML97 [46].

VRML is a language that integrates 3D graphics, 2D graphics, text, and
multimedia into a coherent model, and combines them with scripting and network
capabilities [10]. The language includes most of the common primitives used in 3D
applications, such as geometry, light sources, viewpoints, animation, material
properties, and texture mapping.

From a more technical point of view, VRML documents are text files that describe
3D objects and 3D VEs using a hierarchical scene graph (i.e., a directed acyclic
graph). Entities in the scene graph are called nodes. VRML defines 54 different node
types, including geometry primitives, appearance properties, sound and video, and
nodes for animation and interactivity. For example, hyperlinks are implemented in
VRML using the Anchor node, through which clicking on a 3D object has the effect
of retrieving the resource at a specific URL.

Nodes store their properties in fields; the language defines 20 different types of
fields that can be used to store different types of data, from single integers to arrays of
3D rotations. It is also possible for the programmer to define new nodes (i.e., extend
the language) using a mechanism called prototyping through a statement called
Proto. For example, this mechanism has been used to extend VRML with nodes to
represent and animate 3D humanoids [28] and to implement distributed simulations in
multi-user, networked 3D VEs [8].

VRML defines a message-passing mechanism that allows nodes in the scene graph
to communicate with each other by sending events. This mechanism, together with
special types of nodes, called sensors and interpolators, enables user interaction and
animation. For example, the TimeSensor node generates temporal events as time
passes and is the basis for all animated behaviors. Interpolators nodes are then able to
continuously translate temporal events into data needed for animation. For example,
the PositionInterpolator node is able to translate temporal events into 3D
coordinates, allowing one to move objects in space. Other sensors are useful in
managing user interaction, by generating events as the user moves through the 3D VE
or when the user interacts with some input device (e.g. mouse pointing or clicking).

For example, the ProximitySensor node is able to detect the user’s position in
the 3D VE, while the TouchSensor node is able to detect mouse clicks on 3D
objects.

More complex behaviors (such as realistic physics simulation) can be implemented
by using Script nodes, that allow one to manage VRML nodes with programs
written in Java or JavaScript.

14.2.2.2 eXtensible 3D (X3D)
The eXtensible 3D (X3D) language for defining interactive 3D Web content was
recently released as the successor of VRML, and was approved in 2004 as an ISO
standard [49]. X3D inherits most of the design choices and technical features of
VRML described in the previous section. As a result, it is mostly backward-
compatible, that is, many VRML files require only minimal changes for translation to
X3D.

X3D improves upon VRML mainly in three areas. First, it adds new nodes and
capabilities, mostly to support advances in 3D graphics techniques and hardware,
such as programmable shaders and multi-texturing. Second, it introduces additional
data encoding formats. More specifically, it is possible to represent, store and transmit
X3D content using a VRML-like textual encoding, an XML-based textual encoding,
and a binary encoding, that enables better data compression and thus faster
downloads. Third, similarly to XHTML, it divides the language into functional areas
called components, which can be combined to form different profiles (i.e., subsets of
the entire language) that are suited to specific classes of applications or devices. For
example, this feature would enable one to create a specific profile to take into account
the limited capabilities of mobile devices.

14.3 Adaptivity for 3D Web sites

In Web-based hypermedia, which is the mainstream model in today’s Web,
information is organized and presented into (a graph of connected) pages using
various media, with text being the main form of content/medium. Users interact with
information mainly by reading, filling forms (e.g., using search engines), and
navigating from one page to another by selecting the desired link from those
contained in the current page. Many approaches to Web adaptivity presented in this
book are targeted towards this model. For example, most techniques for adaptive
content presentation discussed in Chapter 7 of this book [9] work with pages and
textual content.

The 3D Web model is more complex than Web-based hypermedia, as Table 1
shows. In general, multimedia information, which can include 3D models, images,
text, and audio, is organized and presented into a 3D space (or even in multiple 3D
spaces connected by hyperlinks), following an arbitrarily complex spatial
arrangement, such as a building or an entire city. Users navigate 3D space by
controlling the position of their viewpoint through mouse, keyboard, or, more rarely,
3D pointing devices, and sometimes have the ability to teleport from place to place or
to other 3D Web sites. As in Web pages, users can exploit hyperlinks to reach other

Web resources. Besides navigation, additional interaction possibilities include the
manipulation of 3D objects (e.g., clicking them to perform an action, moving them in
space) and even building new objects.

Given these conceptual differences, it is not surprising that the techniques and tools
for adaptivity in Web-based hypermedia cannot be straightforwardly applied to
personalize 3D Web content, navigation and presentation. As mentioned above, most
adaptive hypermedia techniques have been developed for content organized in pages
(and not in a 3D space) and mainly made up of text (which is not the prevalent
medium in 3D Web sites). With respect to adaptive navigation support, for example,
link manipulation as presented in Chapter 8 of this book [5] could accommodate only
navigation through hyperlinks in 3D VEs. Moreover, there are also technical
differences to be taken into account, namely different file formats. Therefore,
alternative techniques, or modifications of existing ones, needs to be developed for
adaptivity in 3D Web sites.

In the following, we will describe these techniques, highlighting the main
differences with respect to their Web-based hypermedia counterparts. To make
practical comparisons, we will use AHA! [22] (also discussed in Chapter 1 [7] and
Chapter 13 [9] of this book) as a representative example of Web-based hypermedia
adaptive systems. First, we will discuss how to build and update the user model, i.e.,
the modeling task, and then how to deliver personalized 3D content, i.e., the
adaptation task.

Table 1. Analogies and differences between Web-based hypermedia and 3D Web sites

 Web-based hypermedia 3D Web sites

presentation container

page

3D space

content media

mainly text, but also
images, videos, ...

mainly 3D models, but
also text, images, videos,
...

structural organization graph of pages

3D space or graph of 3D
spaces

navigation

through hyperlinks

by moving in 3D space
(e.g., walking, flying) and
teleporting; also through
hyperlinks

other common users’
activities

reading pages, filling
forms

3D object manipulation
(clicking, moving, …),

14.3.1 Modeling

The approaches to adaptive 3D Web content developed so far have reused standard
user model representation and reasoning techniques, such as stereotypes, graphs of
concepts, and inference rules. Those techniques indeed are not specific to the
hypermedia model. However, the task of user model acquisition (building and
updating the model) requires a different approach in 3D Web sites.

With adaptive Web-based hypermedia, user model updates are typically triggered
each time the browser requests a page. For example, in AHA! the adaptation engine
starts by executing the rules associated with the attribute access of the requested page.
Then, the user model is updated assuming that the requested page will be read, for
example increasing the user’s knowledge level about the concepts described in the
page. This technique is effective under the assumption that the user will fully read the
page, or, in other words, that all content accessed from the server will be read by the
user. This is a strong assumption, since the user might skip parts of the page and thus
cause inappropriate updates to the user model, but there are no easy methods to track
which parts of a page have been actually read. Although there are available
techniques for this purpose, such as eye tracking, they are costly or unpractical to
adopt for Web sites and their visitors, except in special situations such as marketing
research.

With 3D Web sites, assuming that all content accessed from the server is going to
be seen or properly employed by the user is even more likely to cause erroneous user
model updates. In many cases, users see only a part of the downloaded content (3D
models, images, …) that constitutes the 3D VE, for example because exploring a
large or complex environment can require hours. Even in a smaller 3D VE, users
might not see some objects because they are occluded by other objects (from the
user’s path during the visit) or simply do not notice them while navigating. Moreover,
when some object manipulation is possible, users might not perform it or do it in
unexpected ways. For example, in a medical training application where the trainee is
required to virtually perform a certain sequence of actions with virtual medical tools,
one would like to update the user model according to how actions were actually
performed.

A solution proposed [16, 17] consists in closely monitoring users’ behavior in the
3D VE, and send relevant time-stamped users’ actions (e.g., movements, objects
clicked) to the server, where they can trigger user model updates. In this way, we can
update the user model not when content is accessed from the server, but only when
we are confident the user has actually seen it or interacted with it. For example, by
recording user’s position in the 3D VE every few seconds and sending it to the server,
it is possible to know which parts of the environment were actually visited and update
the user model accordingly.

This approach does not require much implementation effort or special hardware
because most Web3D technologies include mechanisms (called sensors in VRML and
X3D, see Section 14.2.2) to monitor low-level events, such as mouse movements, as
they are necessary for interactivity. Relevant interaction data gathered through sensors
can be collected and sent to the server through programs (e.g., VRML Script nodes).
For example, such technique has been used:

- to monitor user’s position in 3D space, and determine which parts of the 3D VE
have been actually visited,

- to check whether the virtual head of the user is oriented towards a certain 3D
object, and determine whether the object might have been actually seen by the
user (e.g., considering distance),

- to check whether and how a certain 3D object has been clicked or dragged by
the user, and determine whether a certain action has been properly performed.

A more detailed technical explanation of the proposed solution, in the case of
VRML-based 3D Web sites, is presented in Sections 14.4.1 and 14.5.2.

14.3.2 Adaptation

In this section, we discuss techniques for adaptive navigation support and adaptive
presentation of content in 3D Web sites. A general issue concerns how frequently
adaptation can and should be made. With adaptive Web-based hypermedia, adaptation
is normally performed on each requested page, although it might be desirable, for
some content, to reduce the frequency of the adaptation process, for example once per
session [22]. However, since users typically read one page at a time, adapting each
requested page enables them to see the effects of adaptation during a browsing session
and at the right time.

So far, the approaches to adaptive 3D Web sites have adopted a similar solution,
i.e., adaptation is performed when 3D content is requested from the server [17,21].
However, in the typical situation where the full 3D VE is downloaded at the
beginning of the user’s visit, with this solution only adaptations between visits are
possible. For example, an adaptive 3D virtual store where all content (store building,
3D models of products, advertisement banners) is downloaded at the beginning of the
user’s visit does not allow the user to see adaptations taking into account which
products have been more examined since the beginning of the visit.

With most Web3D technologies, one can however download or update parts of the
3D VE during the user’s visit. For example, both VRML and X3D provide this
possibility, but developers are required to write ad-hoc scripts. Alternatively, there are
extensions to VRML, such as X-VRML [48], that provide easier mechanisms to
implement updates or downloads of content during visits, and thus carry out
adaptations during visits. A simple but effective example of this strategy has been
used in a 3D virtual museum [13]. The museum features a virtual human acting as a
guide, leading the user around and describing museum items using speech synthesis.
Each time an item needs to be presented, the text to be spoken is requested to the
server, where it is tailored according to the user model, and then downloaded and fed
to the speech synthesizer.

In general, which kinds of adaptations are best suited during visits, and their
optimal frequency, are open issues. Typically, user’s experience of 3D VEs should be
as continuous as possible to maintain user engagement, while in Web-based
hypermedia adaptive changes among pages are not (or much less) perceived as
annoying breakdowns since the experience is already ‘divided into pages’. For
example, modifying the position, appearance or behavior of visible objects while the
user is visiting the 3D VE, even if the user model would suggest to do so, should be

carefully performed, otherwise it will likely turn out as annoying or counter-
productive for the user’s experience. In the following, we first discuss how to
adaptively support navigation and interaction, and then how to adaptively present 3D
content. Finally, in Section 14.3.2.3, we consider adaptivity in the context of multi-
user 3D VEs.

14.3.2.1 Adaptive Navigation and Interaction Support
Although Web-based hypermedia and 3D VEs are different, they are both targeted for
user-driven navigation and exploration [27]. Like in the case of Web-based
hypermedia, it seems thus interesting to develop adaptive navigation and interaction
support techniques that can help users in finding and using information more
efficiently, and prevent navigation and interaction problems. Moreover, navigation is
a very relevant usability issue in the context of 3D VEs. In current 3D VEs, people
often become disoriented and tend to get lost, and these problems are exacerbated by
difficulties such as controlling movements in a 3D space, and limited field of view
compared to the real-world experience. Inadequate navigation support is likely to
result in users taking wrong directions, leaving the 3D VE before reaching their
targets of interest, or with the feeling of not having adequately explored the visited 3D
VE. These problems become even more critical in the case of novice users, who
might become easily frustrated in learning how to navigate.

Although many techniques (called electronic navigation aids), such as electronic
2D and 3D maps, have been developed to help users in navigating 3D VEs, they are
not able to adapt to users with different navigation and interaction abilities. For this
reason, some researchers [6] have proposed to develop adaptive navigation support
techniques, mostly by deriving them from established methods in adaptive
Hypermedia.

Fig. 6. Annotation by means of flashlight (left) and arrows (right) [27]. Image courtesy Stephen
Hughes.

Hughes et al. [27] propose a number of adaptive navigation support techniques
based on computing ideal viewpoints in the 3D VE on the basis of the user model, and
then use them to prevent erroneous directions, disorientation or missed parts. The
ideal viewpoints correspond to locations in the 3D VE (more specifically, positions
and corresponding orientations in 3D space) from which objects or parts of the 3D VE
that are interesting for the user are well visible. The idea is to constrain navigation or
draw additional information to help the user in reaching the ideal viewpoints. The
proposed techniques are derived from the link manipulation techniques discussed in
Chapter 8 of this book [5]:
- direct guidance (a strict linear order through the navigation space) computes a

path through the 3D VE that encompasses all ideal viewpoints, and then
automatically moves the user’s viewpoint along this path;

- hiding (restricting the number of navigation options to a limited subset) hides all
irrelevant orientations by letting the user move her position freely, but having the
system dictate the orientation of the users’ virtual head to force it to fixate on
certain objects while moving;

- sorting (altering the order in which navigation decision are presented to the user)
orders ideal viewpoints and let the user move freely, but, as with hiding, the
system dictates the orientation of the users’ virtual head to force it to fixate on
certain objects in the computed order. In this case, the user still has the possibility
to override system decisions and orient the virtual head to explore other objects;

- annotation (displaying additional information on navigation options) displays
attention-drawing signs, such as the arrows in the right part of Figure 6, to indicate
interesting objects, or highlights them using a flashlight while unimportant
features are left in the dark as in the left part of Figure 6.

An alternative approach [12,16] to implement sorting and annotation-like adaptive
support exploits virtual characters, such as the ones in Figure 7 and Figure 14, that act
as navigation guides to:
- show users the path to an object, or the path through a sorted list of objects of

interest, i.e. implementing sorting-like navigation support;
- provide annotations in the form of additional information on navigation and

interaction possibilities; for example, the virtual character in Figure 7 is showing a
new user that an object can be opened to see its interior.

This style of adaptive support has been employed in two different contexts. In a 3D
virtual museum [12], the virtual character acts as the museum guide, leading the user
around, giving information on museum items and showing possible interactions. The
first time the user visits the museum, a sequence of museum items (i.e., a museum
tour) is generated on the basis of the user profile, and the virtual character guides the
user through them. In successive visits, only those items that have not been seen are
included in the tour (this has similarities with the hiding technique explained above).
In a 3D virtual store [14,16], multiple animated characters are employed to guide the
user to different products (this technique is described in more detail in Section 14.5).
The animated characters look like products (see Figure 14), and their actual
appearance (i.e., the specific product they represent) is adapted to take into account
user’s potential buying interests.

While using 3D virtual characters does not directly help the user in controlling
navigation as direct guidance, hiding, and sorting, it has the following distinctive
features:
- it can draw the user’s attention with natural and familiar methods. For example,

the humanoid character in Figure 7 uses gaze, pointing gestures, body orientation,
and provides textual information through voice;

- it may have an emotional impact on the user, and increase motivation and
engagement: users tend to experience presentations given by animated characters
as lively and engaging [43]. Moreover, it can make the virtual place more lively,
attractive, and less intimidating to the user;

- it does not restrict the navigation possibilities, since the user can choose whether
to employ adaptive support or not by not following the virtual character and
explore the 3D VE on its own.

Fig. 7. A humanoid character shows the user how an object can be opened [12]

Another kind of adaptive navigation and interaction support has been proposed by
Celentano and Pittarello [11]. Their idea is to monitor user’s behavior and to exploit
the acquired knowledge for anticipating user’s needs in forthcoming interactions.
More specifically, the approach is based on using sensors (as described in Section
14.3.1) to collect usage data, and compare them with previous patterns of interaction
stored in the user profile. The patterns of interaction are sequences of activities which
the user performs in some specific situation during the interactive execution of a task,

and are encoded as Finite State Machines (FSM). Whenever the system detects that
the user is entering a recurrent pattern of interaction, it may perform some activities of
that pattern on behalf of the user. For example, figure 8 shows an example of
interaction adaptation in a virtual fair application. The FSM on the top of the Figure
shows the sequence of actions that must be performed to interact with an object inside
a showcase. The FSM on the bottom of the Figure is computed by the interaction
support system after the first FSM has been detected as recurring. In the FSM in
Figure 8, the dotted arrow represents an automatic execution of actions performed by
the system. More specifically, if the user is closer than 3 meters from the showcase,
the open button, even if it is not visible, is automatically pressed to open the showcase
on behalf of the user.

Fig. 8. Interaction adaptation in a virtual fair application [11]. Image courtesy Fabio Pittarello.

14.3.2.2 Adaptive Presentation of Content
Adaptive presentation of content concerns deciding what content is most relevant to
the user, how to structure it in a coherent way, and how to present it in the best way.
For the first two tasks, the most widely used techniques in Web-based hypermedia are
optional fragments and altering fragments. As mentioned in Chapter 7 of this book
[9], those techniques build adaptive pages by selecting and combining an appropriate
set of fragments, where each fragment typically corresponds to a self-contained
information element, such as text paragraphs or pictures.

The techniques for adaptive presentation of 3D content developed so far follow the
same fragment-based approach, and can therefore be thought as variations of the
above mentioned adaptation approaches.

The approach proposed in [17] uses the VRML PROTO construct to define each
kind of self-contained adaptive fragment. In general, PROTO defines a new VRML
node by specifying its interface, i.e. fields and events the node receives and sends,
and its body, i.e. how the node is implemented in terms of existing or previously
defined VRML nodes. As with any other VRML node, each time the new node is
inserted, or instantiated, in the 3D VE, one can change the values of the fields

declared in the interface to customize the features of the node. For example, the
following code defines a very simple node for a box-shaped product in a 3D store,
where the size of the box and the image printed on its sides are encoded as fields:

PROTO BoxProduct
[field SFVec3f bsize 0 0 0 // size of the box in x, y, z
 field MFString imageURL [] // url of image that will appear on the box

]
{
 Shape { // node to define a 3D object
 appearance Appearance { // appearance of the 3D object
 texture ImageTexture {
 url IS imageURL } // applies the image to the box
 }
 geometry Box { // the geometry of the 3D object is defined by a box
 size is bsize } // size of the box
 }
}

 The idea is that fields in the interface define the adaptive features of the node,

abstracting from other non-adaptive details. In the product example, therefore, the
adaptive features are the size of the box, and the image printed on its sides. With this
approach, 3D adaptive content is defined by a set of BoxProduct node
instantiations, such as in the following code fragment, which includes a milk box in a
3D VE:

 BoxProduct {
 bsize 1 2 1
 imageURL “milkBox.jpg”
}

The idea is that field values (such as “milkBox.jpg”) are chosen among a set of
alternatives (that have to be stored separately) or computed by the adaptive engine
when content is requested.

 The alternative technique proposed in [15] for the X3D language does not uses a
prototyping mechanism (which is available also with X3D), but requires an additional
file, called Content Personalization Specification (CPS), for each X3D document with
adaptive content. The CPS file defines adaptive features and may also specify
possible variants. With this technique, the milk box example above would be
implemented by the following X3D code fragment:

 <Shape>
 <Box DEF=”size1” />
 <Appearance>
 <ImageTexture DEF=”imgUrl1” />
 </Appearance>
 </Shape>

and a separate CPS file specifying that the size of the box and the image on its side
are adaptive features. The following CPS does that, also defining two possible actual
adaptations for the product image:

<CPS>
 <adaptiveContent DEF="imgUrl1" attribute="url">
 <value>"milkBox.jpg"</value>
 <value>"cerealBox.jpg"</value>
 <adaptiveContent DEF="size1" attribute="size"/>
</CPS>

One of the advantages of using XML-encoded content (such as X3D) is the
possibility of using adaptation techniques developed for other kinds of XML-based
content. For example, the approach proposed by Dachselt et al. [21] uses the Amacont
general-purpose architecture [25] with X3D content or more high-level formats [20].
For example, the fact that the image printed on the sides of the box-shaped product is
an adaptive parameter would be expressed in the approach of Dachselt et al. by the
following code fragment, which, contrary to the techniques above, includes also the
logic of adaptation:

<Parameter name="url" dataType="CoAnyURI" ... >
 <Variants>
 <Logic>
 <If>
 <Expr>

 <Term type="=">
 <UserParam>Favorite Product</UserParam>
 <Const>Milk</Const>
 </Term>
 </Expr>
 <Then>
 <ChooseVariant>milk</ChooseVariant>
 </Then>
 <Else>
 <ChooseVariant>cereals</ChooseVariant>
 </Else>
 </If>
 </Logic>
 <Variant name="milk">
 <CoAnyURI>"milkBox.jpg"</CoAnyURIs>
 <Variant>
 <Variant name="cereals">
 <CoAnyURIs>"cerealsBox.jpg"</CoAnyURIs>
 </Variant>
 </Variants>
</Parameter>

The Parameter element encodes an adaptive feature (in this case, an image
depicting a product). The enclosed Variants element define possible variants for
the feature. Inside the Variants element, a Logic element defines the logic of
adaptation (if the user’s favorite product is milk, we will use the milk variant, else
we will use the cereals variant. Then, a list of Variant elements defines the
possible variants as URLs of the images.

While these approaches provide fragment-based techniques to perform adaptation
of content, using them is not as easy as in Web-based hypermedia. Text fragments or
images can be simply juxtaposed in a page, with the only possible drawback of not
preserving a good graphic layout. On the contrary, special care has to be taken in the
case of 3D content to preserve a meaningful and understandable 3D space. Once
relevant fragments have been chosen, one needs to properly arrange them in 3D space
and time (if there are animations) such as, for example, included objects do not
intersect each other, are adequately visible from the positions the user will take in
space, and free space is enough for the user to move. Unfortunately, it is very difficult
to develop general algorithms for this purpose. This forces one to limit the space of
possible adaptations to a few variants that are guaranteed to be safe with respect to the
above mentioned constraints, or to implement adaptation strategies that might work
only in a specific 3D VE.

Fig. 9. On the left, a ring menu for choosing a chair; on the right, the same menu adapted for
smaller displays, such as PDAs [21] Image courtesy Raimund Dachselt.

Even if one could easily implement any kind of adaptation, there are presently no
studies that investigate the effect on users of content adaptation in 3D VEs. Therefore,
we can only try to hypothesize which adaptations might be useful and which might be
counterproductive. For example, it is likely that changes in the navigational structure
of a 3D VE will disorient the user and will make it much harder to learn how to
navigate the environment. Therefore, structural changes need to be chosen carefully

and be limited in scope and frequency. In the following, we mention some examples
of adaptations of 3D content that have been proposed in the literature.

In the adaptive 3D e-commerce example we will discuss in Section 14.5, the
number of instances of products in shelves can vary in a given range (one to four) to
adaptively increase or decrease the visibility of the product itself (see Figure 15). The
limited number of variants guarantees that each product will not take the space
reserved to other products.

Fig. 10. Web site for adjusting the seating capacity of conference rooms Image
courtesy Raimund Dachselt.

A 3D adaptive e-learning system [24] organizes learning content into a building
made of rooms, and the adaptation engine places rooms (by just exchanging content
among equally-sized rooms) that correspond to the areas of higher user's interest
before rooms whose contents are less interesting for the user.

The 3D menus shown in Figure 9 [21] are examples of adaptation to the user’s
device. The idea is to provide different alternatives, with respect to screen space
usage, for the same 3D interface element and information presented. In particular, the
screenshot on the right shows a smaller-sized version of the ring menu on the left, and
is better suited to small displays, such as PDAs.

Finally, 3D content could also be considered in media adaptation. Figures 10 and
11 shows two different versions of the same Web site, whose purpose is to adjust the
seating capacity of conference rooms [21]. Figure 10 shows an HTML-based version,

which might be more suited to low-bandwidth connections or users that are not
familiar with 3D. Figure 11 shows a 3D-based version, where the conference room is
represented by a 3D VE to better visualize the final result.

Fig. 11. Adapted version of the content in Figure 10, using a VRML 3D VE Image courtesy
Raimund Dachselt.

14.3.2.3 Multi-User 3D VEs
No examples of adaptivity in multi-user 3D VEs have been reported in the literature.
This might be due to the fact that multi-user 3D VEs can conflict with personalization
aspects, making some of the adaptations presented in the previous section
troublesome. In general, if multiple users navigate and interact together in the same
3D VE, adaptation of content cannot safely target the specific profile of a single user.
For example, adaptations that cause one person to see the 3D VE differently from
others could cause deep misunderstandings (e.g., a reference to a highlighted object
that is not highlighted for another person) that may hinder social activities.

There are however strategies that could be pursued to prevent this kind of
problems. For adaptations that conflict with multi-user activities, one could try to find
the best common adaptation which maximizes the match with the different user
models. However, considering that the set of users could continuously change, this
might not be easy to implement. A second possibility could be to clearly mark what is
personalized in the 3D VE, and see if users are able to adopt new conventions.

Another possibility would be to find useful adaptations that do not conflict with multi-
user activities, or even result from them. For example, an idea that has been
developed for adaptive multi-user textual environments is to change the description of
objects in the environment to reflect usage [23], such as doors or books showing signs
of wear. A similar idea could be used in a multi-user 3D VE to visually represent
frequently accessed paths or objects.

14.4 A Generic Software Architecture for Adaptive 3D Web sites

A few software architectures for adaptive 3D Web sites can be found in the literature.
The AWe3D (Adaptive Web 3D) architecture [17] is a general purpose architecture
for generating and delivering adaptive VRML content which was proposed in 2002.
More recently, a few researchers [15,21] have focused on integrating 3D content into
existing technologies, such as the Amacont general-purpose architecture [25], for
Web adaptivity.

In the following, we describe a generic architecture (depicted in Figure 12) that
generalizes the ideas of AWe3D, for delivering adaptive content in 3D Web sites. The
architecture is composed by the following modules:
- a Usage Data Sensing module, whose purpose is to monitor user’s interaction with

the 3D VE, and send the relevant events through the Internet. This module is
located on the client side, run by the user’s browser;

- a Usage Data Recorder module, whose purpose is to receive, on the server side,
the events sent by the Usage Data Sensing module, and record them in the User
Model Database;

- an Adaptivity Engine, that: (i) performs inferences needed to update the user
model on the basis of recorded usage data, and (ii) given the current user model,
computes a set of adaptation choices for requested adaptive content;

- a 3D Content Creator module, that: (i) accepts content requests from the client;
(ii) when adaptive content is requested, asks the Adaptivity Engine to provide the
correct adaptation choices, and uses them to build the adapted 3D content,
retrieving needed files (3D models, images, sounds,…) from the 3D Content
Database; (iii) delivers the requested 3D content to the client.

We now describe in more detail a possible set of technical choices to implement
each module in the case of VRML-based 3D Web sites.

Fig. 12. Schema of a general architecture for adaptive 3D Web sites

14.4.1 Usage Data Sensing

Following the technique outlined in Section 14.3.1, this module is implemented by a
set of VRML sensors whose output is routed to a Script node, which transmits
relevant usage events to the Usage Data Recorder module by using a HTTP
connection.

 The type, number and specific settings of VRML sensors in this module depend
on the type and number of usage data that needs to be collected for a specific
application. In the simplest case, one would need one sensor for each event that has to
be sensed. VRML sensors allow one to track the user’s position, or user’s collisions
with an object, or mouse actions on an object, or visibility of an object. By combining
the output of multiple sensors in a Script node, one can obtain higher level sensing of
the user’s actions: for example, a complex action that requires a sequence of clicks
and drags can be monitored by using appropriate sensors to detect these low-level
events, and a Script node that receives the sensors’ output, recognizes the correct
sequence, and send the resulting high-level event to the server.

14.4.2 Usage Data Recorder

The Usage Data Recorder is implemented by a simple server-side program that
receives usage data and stores them with a DBMS. A more elaborate version could
also perform calculations on the usage data before storing, for example filtering,
averaging, sums, …

14.4.3 3D Content Creator Module

The 3D Content Creator receives requests for 3D content, and returns that content to
the client. Adaptive fragments are represented through VRML PROTO constructs
(using the technique illustrated in Section 14.3.2.2), whose fields encode the adaptive
features, such as object geometry, color, and size. The 3D Content Creator Module
asks the Adaptivity Engine to compute actual values for each PROTO field (i.e., a set
of adaptation choices), and use the result to instantiate the PROTO in the file that is
returned to the client, possibly retrieving needed code (such as 3D models,
animations, and images) from the 3D Content Database.

14.4.4 Adaptivity Engine

The technical choices that have to be taken in implementing the Adaptivity Engine
depend on how complex are the inferences that have to be performed. A simple
solution, using a rule-based approach, is to write a set of User Model Update rules to
update the user model on the basis of collected usage data, and a set of Content
Adaptation rules to compute personalized field values for adaptive content. The User
Model Update rules can be activated each time usage data are received from the
client, or periodically, at given intervals of time or after a certain number of user’s
visits to the Web site. The Content Adaptation Rules are activated each time the 3D
Content creator asks for personalized versions of adaptive fragments.

14.5 An Application in E-Commerce

In the following, we describe a detailed example in the domain of e-commerce
implemented using the architecture introduced in the previous section. We first
describe the considered 3D store, then we discuss specific technical choices to
implement an adaptive version of it. The example we propose is a simplified version
of the 3D adaptive store presented in [17], to which we refer the reader for more
detailed technical specifications and code examples.

14.5.1 A 3D Store VE

The 3D VE we consider is composed by a 3D model of a department store, displaying
products on several shelves. The customer can wander through the store, obtain
information on products by clicking on them, put them in the cart, which is also
represented in 3D (see Figure 13), and go to the checkout counter to conclude her
shopping session. Besides shelves, customers’ attention towards products is sought by
exploiting special rotating display spots in prominent places, advertisements on the
walls, and audio messages. Moreover, the store is populated by Walking Products
(WPs, see Figure 14), a navigation support feature to help users in finding products
[14]. WPs are 3D animated representations of products that move through the store
and walk to the place where the corresponding type of products is. A customer in the

3D store sees a number of WPs wandering around: if she is looking for a specific type
of products, she has just to follow any WP of that type and will be quickly and easily
lead to the desired destination.

Fig. 13. A 3D store with products on shelves

Fig. 14. Example of a Walking Product

14.5.2 Usage Data Sensing and Recording

Usage data we are interested in concern typical interactions with products in the store.
More specifically, the data collected by the Usage Data Sensing module by
monitoring customer’s actions are:
- Seen Products. While the customer wanders around the store, she voluntarily or

involuntarily looks at the products which fall in her field of view;
- Clicked Products. When the customer wants to know more about a product, she

clicks on it to get the product description;

- Cart Products. The product description allows the customer to put the product in
the shopping cart for a possible later purchase;

- Purchased Products. A product in the cart can be later purchased by going to the
checkout counter.

Seen Products and Clicked Products data are acquired through Visibility and
Touch sensors associated to each product. The following is a slightly simplified
PROTO defining a product node with the required sensing capabilities:

PROTO Product
[field MFNode product3DModel []
 eventOut SFTime productSeen

 eventOut SFTime productClicked]
{
 Group { children IS product3DModel }

 TouchSensor {
 touchTime IS productClicked }

 VisibilitySensor {
 enterTime IS productSeen }

 }

The interface of the node Product (the first three lines after the PROTO
statement) include a field for the 3D model of the product (product3DModel), and
two events that can be sent to other nodes, respectively indicating when the product is
seen (productSeen) and clicked (productClicked). The Product3DModel
field is an adaptive feature of the product: its 3D model can be chosen among
different alternatives, for example to occupy less or more space in shelves, as shown
in Figure 15. The body of the node Product (the code between braces) includes a
reference to the 3D Model of the product, a Touch Sensor to detect click events, and a
Visibility Sensor to detect when the product is visible.

 In similar ways, Cart Products and Purchased Products data is acquired in the
VRML code describing the cart and the checkout counter, respectively.

14.5.3 User Model

Customer models in the User Model Database of the 3D store contain the following
information:
- demographic data, including gender, year of birth, and product categories of

interest among those available in the store, which the customer can enter through
an HTML form the first time she enters the store;

- user preferences about the store, such as presence of audio and music, and
preferred music genre, which are also entered or modified by the user through
the HTML form;

- usage data, described in the previous section, and exploited to dynamically
update the user model. Usage data allows one to obtain a precise quantitative

measurement of which brands, product categories, specific products, price
categories, and special offers have been respectively seen, clicked, put in the
shopping cart or purchased by the customer;

- Product Interest Ranking, which ranks products and products categories
according to customer’s interests.

To determine the Product Interest Ranking, an initial value is determined by using
a HTML form that allows the customer to indicate her products of interests: if she
chooses to fill it, the information is used to initialize the ranking. If the customer does
not provide product interests in the HTML form, one can try to predict interests by
using demographic profiles. Then, regardless of the quality of the initial value,
product interests will be continuously updated by the Adaptivity Engine which
exploits usage data: each purchase, cart insertion, and click of a product increases
(with different weights) the level of interest in the corresponding product and product
category or in related products.

14.5.4 3D Store Adaptivity

The adaptive features of the 3D store mainly concern where and how products are
displayed:
- each product is displayed in the shelf assigned to its product category, but the

amount of shelf space devoted to the product is adaptively changed to increase or
decrease product visibility;

- additionally, a product may appear also in display spots, banners, or WPs to
increase its exposure towards the user.

Other adaptive features concern the music that is played, and the audio messages
that advertise products.

In the following, we present some examples of rules that perform adaptations in the
3D store. Simple rules are given by the direct associations between user’s preferences
about presence of music and preferred genres, and songs that are played during visit.
More complex examples concern the exploitation of the user model to change the
level of product exposure in the 3D store. The level of exposure of each product can
vary the product visibility and attractiveness, for example by increasing space devoted
to the product in the store or adding banners advertising the product. We call
ExposureLevel(X) the parameter which represents the level of exposure for product X.
The value of ExposureLevel(X) is determined by five more specific parameters:
- ShelfSpace(X) indicates the space assigned to product X on the shelf. It can take

four different values: higher values make X more visible to the customer,
increasing ExposureLevel(X). The products in Figure 15 show two different
allocations of shelf space;

- DisplaySpot(X) is false if product X is displayed only on its shelf, while it is true if
product X is displayed also in a separate display spot in a prominent place (we
could have also used numerical values to allow the same product to be displayed
on more than one display spot);

- Banner(X) is true if there is a banner advertising product X in the store;
- AudioMessage(X) is true if audio advertisements for product X are played;
- WP(X) is true if there is a WP representing product X in the store.

A true value for any of the last four boolean parameters increases
ExposureLevel(X). Personalization rules first suggest changes to exposure level by
asserting increase or decrease goals for specific products. Then, they focus on
achieving those goals, by changing one or more of the above described parameters,
according to the availability of store resources (e.g., if a shelf is full, shelf space for
products cannot be increased on that shelf).

Fig. 15. Two different possible allocations of shelf space for the same product

We now examine some specific rules and how they relate to the information
recorded in the user model. Suppose that a product X has never been seen by the
customer or that changes in the Product Interest Ranking show an increasing attention
towards the product. In both cases, a seller would like to increase the exposure of the
product (in the first case, to give the customer the opportunity of seeing the product;
in the second case, to better match customer interests). The rules that implement the
two cases can be expressed as follows, where seen(X) is the recorded number of
times a product has been seen, ProductInterest(X) is the rank in the product
interest ranking, and NumberOfVisits is the number of times the user has visited
the store:

IF seen(X)=0 AND NumberOfVisits>3 THEN
 goal(IncreaseExposureLevel(X))

IF increasing(ProductInterest(X)) THEN
 goal(IncreaseExposureLevel(X))

As another example, consider the cross-sell case where the purchase of a specific

product X is an indicator of a likely future interest for related products and we want to
update the user model accordingly. For example, if a customer buys a computer and
has never purchased a printer, she could be soon interested in a printer. The rule can
be expressed as follows, where purchased(X) is the recorded number of times a
product has been purchased, lastVisit extracts the value of data considering only
the last visit to the store, and RelatedProduct(X,Y) relates products by using
associations provided by the seller:

IF lastVisit(purchased(X))>0 AND RelatedProduct(X,Y)
AND purchased(Y)=0 THEN increase(ProductInterest(Y))

As an effect of the increased product interest, the second rule examined above will
then suggest an increase in the exposure level of related products which have not been
purchased yet. Note that the RelatedProduct relation cannot be used transitively,
because this could lead to counterproductive merchandising strategies. For example,
an ink cartridge is obviously related to a printer, and a printer is obviously related to a
computer, but it does not make sense to increase the exposure level of ink cartridges if
a customer has purchased a computer but not a printer.

Finally, to prevent an excessive number of changes to the 3D store from one
session to another, we impose a limit on their number for any given session. The idea
is to keep the experience of returning to the 3D store consistent with the familiar
experience of returning to a known real-world store: the store layout remains
essentially the same, and a limited number of changes concern what products are
displayed, and how the attention of the customer towards those products is sought.

14.6 Conclusions

Adaptivity of 3D content for the Web is a very recent and largely unexplored research
topic. As shown in Section 14.3, there are only a few examples of adaptation of 3D
content in the literature, and no thorough evaluations with users have been carried out.
To understand the true potential of adaptivity of 3D content, we need to explore in
more depth the space of possible adaptations, including less obvious ones. For
example, most 3D VEs (including those built with VRML or X3D) allow the use of
spatial audio. An interesting possibility could be to use adaptive spatial audio to
provide information to the user, for example navigation support.

It is also important to investigate users’ reactions to adaptive changes in 3D
content. As discussed in the Chapter, adaptivity may break or hinder important
features of a user's experience in a 3D VE, such as the construction of spatial
knowledge, and the continuity of the experience. Studies on users are therefore
needed to establish when and how it is useful to adaptively change a 3D VE.

We hope that this Chapter has provided an easy-to-read introduction for students,
as well as a stimulating starting point for researchers that aim at advancing this line of
research.

14.7 References

1. @mart 3D store, www.activeworlds.com (last access on August 2006)
2. AlphaWorld virtual community, www.activeworlds.com (last access on August 2006)
3. Bitmanagement Contact, www.bitmanagement.com (last access on August 2006)
4. Barbieri, T., Paolini, P.: Reconstructing Leonardo's Ideal City - from Handwritten

Codexes to Webtalk-II: a 3D Collaborative Virtual Environment System. In: Proc. of
the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage (VAST
2001), Athens, Greece. ACM Press, 61-66

5. Brusilovsky, P.: Adaptive navigation support. In Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.): The Adaptive Web: Methods and Strategies of Web

Personalization, Lecture Notes in Computer Science, Vol. 4321. Springer-Verlag,
Berlin Heidelberg New York (2007) this volume

6. Brusilovsky, P.: Adaptive Navigation Support: From Adaptive Hypermedia to the
Adaptive Web and Beyond. Psychnology Journal 2 1 (2004) 7-23

7. Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive
educational systems. In Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive
Web: Methods and Strategies of Web Personalization, Lecture Notes in Computer
Science, Vol. 4321. Springer-Verlag, Berlin Heidelberg New York (2007) this
volume

8. Brutzman, D.: The Virtual Reality Modeling Language and Java. Communications of
the ACM 41 6 (1998) 57-64

9. Bunt, A., Carenini, G., Conati, C.: Adaptive Content Presentation for the Web. In
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web: Methods and
Strategies of Web Personalization, Lecture Notes in Computer Science, Vol. 4321.
Springer-Verlag, Berlin Heidelberg New York (2007) this volume

10. Carey, R., Bell, G.: The annotated VRML97 Reference Manual. Addison Wesley
(1997)

11. Celentano A., Pittarello F.: Observing and Adapting User Behavior in Navigational
3D Interfaces. In: Proc. of 7th International Conference on Advanced Visual
Interfaces 2004 (AVI 2004), Gallipoli, Italy. ACM Press (2004) 275-282

12. Chittaro L., Ieronutti L., Ranon R.: Navigating 3D Virtual Environments by
Following Embodied Agents: a Proposal and its Informal Evaluation on a Virtual
Museum Application. Psychnology Journal 2 1 (2004) 24-42

13. Chittaro L., Ranon R., Ieronutti L.: Guiding Visitors of Web3D Worlds through
Automatically Generated Tours. In: Proc. of the 8th International Conference on 3D
Web Technology (Web3D 2003), St. Malo, France. ACM Press (2003) 85-91

14. Chittaro L., Ranon R.: New Directions for the Design of Virtual Reality Interfaces to
E-Commerce Sites. In: Proc. of the 5th International Conference on Advanced Visual
Interfaces (AVI 2002), Trento, Italy. ACM Press (2002) 308-315

15. Chittaro L., Ranon R.: Using the X3D Language for Adaptive Manipulation of 3D
Web Content. In: Proc. of the 3rd International Conference on Adaptive Hypermedia
and Adaptive Web-based Systems (AH 2004), Eindhoven, Netherlands. Springer-
Verlag, Berlin Heidelberg New York (2004) 287-290

16. Chittaro L., Ranon R.: Adding Adaptive Features to Virtual Reality Interfaces for E-
Commerce. In: Proc. of the 1st International Conference on Adaptive Hypermedia and
Adaptive Web-based Systems (AH 2000), Trento, Italy. Springer-Verlag, Berlin
Heidelberg New York (2000) 86-97.

17. Chittaro L., Ranon R.: Dynamic Generation of Personalized VRML Content: a
General Approach and its Application to 3D E-Commerce. In: Proc. of the 7th
International Conference on 3D Web Technology (Web3D 2002), Tempe, Arizona.
ACM Press (2002) 145-154.

18. Chittaro L., Ranon R.: Web3D Technologies in Learning, Education and Training:
Motivations, Issues, Opportunities. Computers and Education, in press.
doi:10.1016/j.compedu.2005.06.002, published online in 2005.

19. Corvaglia D., Virtual Training for Manufacturing and Maintenance based on Web3D
Technologies. In: Proc. of the 1st International Workshop on Web3D Technologies in
Learning, Education and Training (LET-WEB3D 2004), Udine, Italy, (2004) 28-33

20. Dachselt, R. , Hinz , M., Meissner , K. : Contigra: an XML-based architecture for
component-oriented 3D applications. In Proc. of the 7th International Conference on
3D Web Technology (Web3D 2002), Tempe, Arizona, USA. ACM Press (2002) 155-
163

21. Dachselt , R., Hinz, M., Pietschmann, S. Using the Amacont Architecture for Flexible
Adaptation of 3D Web Applications. In: Proc. of the 11th International Conference
on 3D Web Technology (Web3D 2006), Columbia, Maryland, USA. ACM Press
(2006), 75-84.

22. De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits, D.,
Stash, N.: AHA! The Adaptive Hypermedia Architecture. In: Proc. of the 14th
Conference on Hypertext and Hypermedia (Hypertext 2003), Nottingham, UK. ACM
Press (2003) 81-84.

23. Dieberger, A.: Browsing the WWW by interacting with a textual virtual environment
- A framework for experimenting with navigational metaphors. In: Proc. of the 7th
Conference on Hypertext (Hypertext 1996), Washington DC, USA. ACM Press
(1996) 170-179.

24. dos Santos, C. T., Osorio, F. S.: An Intelligent and Adaptive Virtual Environment and
its Application in Distance Learning. In: Proc. of the 6th International Conference on
Advanced Visual Interfaces (AVI 2004), Gallipoly, Italy. ACM Press (2004) 362-
365.

25. Fiala, Z., Hinz, M., Meissner, R. K., Wehner, F. A Component-based Approach for
Adaptive, Dynamic Web Documents. Journal of Web Engineering 2 1-2 (2003) 58–
73.

26. Fiat Ireland home page, www.fiat.ie (last access on August 2006)
27. Hughes, S., Brusilovsky, P., Lewis, M.: Adaptive navigation support in 3D e-

commerce activities. In: Proc. of Workshop on Recommendation and Personalization
in eCommerce at AH 2002 (2002) 132-139.

28. ISO/IEC FCD 19774 (2004). Humanoid animation (H-Anim) Available:
www.web3d.org/x3d/specifications/ISO-IEC-19774-HumanoidAnimation/ (last
access on August 2006)

29. Java3D media framework, java.sun.com/products/java-media/3D/ (last access on
August 2006)

30. John, N. W.: The Impact of Web3D Technologies on Medical Education and
Training. Computers and Education, in press. doi:10.1016/j.compedu.2005.06.003,
published online in 2005.

31. Karpouzis, K., Caridakis, G., Fotinea, S. E., Efthimiou, E.: Educational Resources
and Implementation of a Greek Sign Language Synthesis Architecture. Computers
and Education, 2005, in press. doi:10.1016/j.compedu.2005.06.004, published online
in 2005.

32. Macromedia Shockwave, www.adobe.com/products/shockwaveplayer/ (last access on
August 2006)

33. Mediamachines Flux, www.mediamachines.com (last access on August 2006)
34. MPEG-4 International Standard (2002). MPEG-4 Specification. International

Standard ISO/IEC JTC1/SC29/WG11 N4668.
35. Octaga Player, www.octaga.com (last access on August 2006)
36. Outline 3D Web site, www.outline3d.com (last access on August 2006)
37. ParallelGraphics Cortona, www.parallelgraphics.com /products/cortona/ (last access

on August 2006)
38. ParallelGraphics Virtual Manuals, www.parallelgraphics.com/virtual-manuals (last

access on August 2006)
39. Phillips, N., John, N.W.: Web-based Surgical Simulation for Ventricular

Catheterisation. Neurosurgery 46 4 (2000) 933-937.
40. Sims, E.M.: Reusable, Lifelike Virtual Humans for Mentoring and Role-Playing.

Computers and Education, in press. doi:10.1016/j.compedu.2005.06.006, published
online in 2005.

41. The Web3D Consortium, www.web3d.org (last accessed on August 2006).

42. Udine3D, udine3d.uniud.it (last access on August 2006)
43. van Mulken, S., André, E., Muller, J.: The Persona Effect: How Substantial is it? In:

Proc. of the 1998 Human Computer Interaction Conference (HCI’98), Sheffield, UK.
Springer-Verlag, Berlin Heidelberg New York (1998) 53-66.

44. Virtual Ljubljana, www.ljubljana-tourism.si/en/ljubljana/virtual_ljubljana/ (last
access on August 2006)

45. VR for all community site, www.vr4all.net (last access on August 2006)
46. VRML International Standard (1997). VRML97 Functional Specification.

International Standard ISO/IEC 14772-1:1997. Available at
www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/ (last access on
August 2006).

47. Wakita, A., Hayashi, T., Kanai, T., Chiyokura, H.: Using Lattice for Web-based
Medical Applications. In: Proc. of the 6th International Conference on 3D Web
Technology (Web3D 2003), Saint Malo, France. ACM Press (2003), 29-34.

48. Walczak, K., Cellary, W.: X-VRML for Advanced Virtual Reality Applications.
IEEE Computer, 36 3 (2003) 89-92.

49. X3D International Standard (2004). X3D framework & SAI. ISO/IEC FDIS (Final
Draft International Standard) 19775:200x. Available at
www.web3d.org/x3d/specifications (last access on August 2006).

50. Mzoughi, T., Davis Herring, S., Foley, J. T., Morris, J. M., Gilbert, P. J: WebTOP: A
3D Interactive System for Teaching and Learning Optics. Computers and Education,
in press. doi:10.1016/j.compedu.2005.06.008, published online in 2005.

