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Abstract

Interactive visualization of large 3D architectural models on mobile
devices such as PDAs would significantly benefit applications such
as indoor navigators and mobile tourist guides, on-site monitoring
and annotation of architectural designs at construction sites, evacu-
ation training and evacuation guidance.
Although PDAs are becoming more powerful and a few are even
equipped with 3D hardware accelerators, their performance does
not yet allow to handle a large architectural model at an accept-
able frame rate. To face this problem, we propose and experiment
a system that exploits hierarchical view frustum culling and portal
culling for interactively visualizing 3D architectural models on mo-
bile devices. We also discuss the performance of the system and
its integration with our mobile X3D player (MobiX3D). The per-
formance of the system has been evaluated on a large three-floor
building with 39 rooms, 42 stairs and 42 doors.
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1 Introduction

Interactive visualization of large 3D architectural models on mobile
devices such as PDAs would significantly benefit applications such
as indoor navigators and mobile tourist guides, on-site monitoring
and annotation of architectural designs at construction sites, evacu-
ation training and evacuation guidance. The visualization can also
be location-aware, updating itself and providing information based
on the users’ position in the physical world.

The difficulty in rendering large 3D building models on mobile de-
vices is related to their complexity in terms of polygons and in terms
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of topology. However, the topological structure of buildings can be
exploited to improve rendering speed: only the room where the user
currently is and what the user sees from its doors and windows need
to be processed. Portal culling algorithms [Airey 1990; Teller and
Séquin 1991; Luebke and Georges 1995] exploit this idea to speed
up the rendering of 3D buildings.

Although PDAs are becoming more powerful and a few are even
equipped with 3D hardware accelerators, their performance does
not yet allow to handle a large architectural model at an accept-
able frame rate. Mobile devices are indeed characterized by some
serious limitations with respect to desktop systems:

• limited CPU and memory: PDAs use limited-power proces-
sors and have small RAM memories (e.g. 64 or 128 MB) that
limit the size of the 3D model that can be loaded in the main
memory.

• limited bus speed: the latest PDA internal and external buses
have speeds that limit the dynamic loading and flushing of
data from storage memory, needed for displaying large 3D
models.

• absence or limited performance of graphics accelerators:
most mobile devices on the market do not have a 3D graphics
accelerator. A 3D graphics accelerator would also save CPU
power and bus bandwidth while displaying large 3D models.

• low resolution of the screen: the latest PDAs support VGA
resolution (480x640), but most PDAs are limited to lower res-
olutions such as 240x320. This limitation affects the quality
of displayed images on mobile devices.

• absence or limited performance of FPUs: some mobile de-
vices on the market are not equipped with a FPU, limiting
the speed of floating-point operations. This limitation is usu-
ally tackled by using fixed-point arithmetics that is obviously
more efficient, but also introduces a loss of accuracy.

• energy consumption issues: battery consumption is a crit-
ical factor in mobile devices. PDAs typically reduce clock
frequency to save energy when the battery is low on power.

This paper describes the approach we followed for interactively vi-
sualizing large 3D buildings on mobile devices. We exploit portal
culling as well as view frustum culling (polygons that are out of
an approximation of the user’s field of view do not need to be pro-
cessed). The culling algorithm we implemented is conservative: it
does not cull polygons that are visible, but it can sometimes pro-
cess polygons that are not visible. To load and render X3D files,
our system uses the MobiX3D player [Nadalutti et al. 2006] (freely



available for download at [HCI Lab – University of Udine 2006]).
MobiX3D was intended for playing generic X3D content on Pocket
PCs, and the interactive rendering of a whole model of a large build-
ing could be impossible because of memory limitations and com-
putational constraints of the target devices. To allow MobiX3D to
interactively display X3D models of large buildings, it was neces-
sary to come up with a dynamic method for:

• minimizing the amount of hidden polygons to be processed;

• handling the dynamic loading and flushing of data from the
storage memory of the device in an efficient way, without in-
terrupting the virtual exploration of the 3D model.

The paper is organized as follows. Section 2 surveys related work
on culling algorithms and on systems for interactive visualization
of architectural models. Section 3 describes in detail the algorithm
we implemented to handle large 3D architectural models on mobile
devices. Section 4 discusses implementation details. Section 5 ana-
lyzes system performance. Finally, Section 6 provides conclusions
and outlines future research directions.

2 Related work

2.1 Culling algorithms

When handling large models, visibility culling can be used to per-
form a selective removal of part of the scene before it is sent through
the graphics pipeline, thus reducing the number of polygons to be
processed. Culling is based on computing visibility for the objects
in the scene (i.e., determining whether a viewer can see an object
from a given viewpoint) and can be done totally on-the-fly or it can
exploit pre-computed data structures: the more static is the scene,
the larger is the number of polygons whose visibility can be com-
puted off-line.

An ideal visibility culling algorithm would send only the Exact Vis-
ible Set (EVS) of polygons through the pipeline. Unfortunately,
the complexity for creating an EVS is too high and most visibil-
ity culling algorithms thus use a so-called Potential Visible Set
(PVS). A PVS that fully includes the EVS is calledconservative
PVS. Conservative PVS are often considered more useful than non-
conservative PVS because all visible polygons are rendered.

The first classical strategies ofvisibility culling areback-faceand
view-frustum culling. Back-face culling algorithms [Kumar et al.
1996] avoid the rendering of polygons that face away from the
viewer, while view-frustum culling algorithms avoid processing
polygons that are out of theview volume(i.e., a representation of
the user’s field of view); the most used volumes are boxes and frus-
tums. Considering the view volume used to render a given frame,
only the polygons falling inside such volume will eventually be ren-
dered in the final frame. It is therefore possible to cull polygons lay-
ing outside of the view volume early on, before further processing
takes place. Furthermore, it is also possible to approximate objects
with their bounding volumeto speed up the culling process.Hier-
archical view frustum cullingis based on this idea. A whole bound-
ing volume hierarchy is built bottom-up starting from the bounding
volume of each object and following the already available hierar-
chy of the scene. The bounding volume hierarchy is then compared
with the view volume and nodes whose bounding volumes fall com-
pletely outside the view volume are culled together with their child
nodes. Hierarchical view frustum culling was introduced in [Clark
1976] and is now a well-known method in 3D graphics [Slater and
Chrysanthou 1997; Assarsson and Möller 2000].

While hierarchical view frustum culling helps reducing the pro-
cessed polygons, there are certain situations where the produced

PVS fits too loosely the actual EVS. One such situation is given by
scenes with lots of occlusions, where many objects falling within
the view volume are not really visible because they are occluded
by other objects. Z-buffer implements this occlusion check, but in
a late stage when polygons have already been partially processed.
Occlusion cullingmethods exploit occlusions by performing an
early calculation of the occluded objects and by culling them be-
fore they are processed. Architectural models lend themselves to
occlusion culling, because the walls of a building are often good
occluders.

Following the taxonomy of [Cohen-Or et al. 2003], occlusion
culling methods fall in two categories:point-based methodsand
from-region methods. Point-based methods compute the visible set
with respect to the location of the current viewpoint only; from-
region methods compute a visible set that is valid in a given region
of space. From-region methods have two main advantages in inter-
active walkthrough rendering: (i) the visible set calculated by these
methods is generally valid for more than one frame also when the
viewer moves, so their computational cost can be spread over time,
and (ii) from-region methods have predictive capabilities: one can
pre-fetch the adjacent regions to improve rendering performance.

From-region methods can be classified in two categories: (i) por-
tal culling algorithms, and (ii) algorithms for generic scenes. Por-
tal culling algorithms exploit the characteristic features of archi-
tectural interiors (their subdivision in floors and rooms) to opti-
mize the rendering process. Portal culling was first introduced in
[Airey 1990]. [Teller and Śequin 1991] worked on a more efficient
and complex version of the original portal culling method. A sim-
ple method to implement real-time portal culling without too much
pre-processing was proposed by Luebke and Georges [Luebke and
Georges 1995].

Portal culling works on a representation of the scene made ofcells
(i.e., parts of the scene delimited by specific boundaries) connected
to each other byportals (i.e., openings on the boundaries of cells).
The fundamental idea is that the viewer is inside a cell, and objects
belonging to other cells can only be seen through portals; culling
can therefore be applied to all objects falling outside the portal ar-
eas. The cell structure can be organized to preserve the semantics
of a building by representing each room as a cell and each door and
window as a portal.

Cells and portals can be defined manually, but there are algorithms
that automatically process the scene and create such data structures.
Recent results are reported in [Haumont et al. 2003] for indoor
scenes and in [Lerner et al. 2003; Lerner et al. 2006] for both out-
door and indoor scenes.

In architectural models subdivided into separate cells (or rooms),
there are two types of visibility. Following [Marvie and Bouatouch
2004], they can be calledcell-to-geometry visibilityandcell-to-cell
visibility. Cell-to-geometry visibility is the relation that binds each
single cell to the objects it contains, i.e. it binds the room of a
building to the set of objects it contains. Cell-to-cell visibility is
the adjacency relation that binds cells connected to each other by a
portal.

2.2 Systems for interactive visualization of large ar-

chitectural models

2.2.1 Desktop systems

One of the first desktop systems for interactive visualization of large
architectural models is described in [Funkhouser et al. 1992]. That
system employs a hierarchical database containing objects at differ-
ent levels of detail, cell-to-cell and cell-to-object visibility, a real-



time memory management algorithm for swapping objects in and
out of memory as the observer moves through the model, and a
real-time refresh algorithm for choosing which objects to render at
which levels of detail in each frame. The system was used to inter-
actively display a floor of the planned Computer Science building
at the Berkeley University of California. Considering that current
mobile developers have to face in a new context the problems that
desktop developers faced twenty years ago, the ideas described in
[Funkhouser et al. 1992] can be of interest.

Aila and Miettinen [Aila and Miettinen 2004] proposed an occlu-
sion culling system, called dPVS, for massive dynamic environ-
ments. The dPVS system is intended for desktop platforms, but
most of the ideas in [Aila and Miettinen 2004] can be also used
in the mobile context. The main contribution of Aila and Mietti-
nen is the definition of a framework that integrates different culling
methods (such as view frustum culling, portal culling, occlusion
culling algorithms based on visibility database) into a system that
efficiently renders massive dynamic environments. The dPVS sys-
tem uses a hierarchical spatial database to store the position of every
object in the scene and to efficiently update the position of dynamic
objects. The system has been tested with both outdoor and indoor
complex scenes, achieving acceptable frame rates.

Marvie and Bouatouch [Marvie and Bouatouch 2004] proposed a
VRML97-X3D extension to support portal culling. Their proposal
is based on hybrid visibility relationships, exploiting both the cell-
to-cell and cell-to-geometry visibility. Their focus is on the opti-
mization of network bandwidth and rendering in client-server ar-
chitectures, but their solution can be also used on a mobile device.

2.2.2 Mobile systems

The first attempts at interactively rendering indoor models on mo-
bile devices come from videogames. In particular, some game en-
gines, such as Quake III, have been ported to the Windows Mobile
platform. There are two mobile implementations of the Quake III
rendering engine: (i) Quake Mobile [Pulse Interactive 2005], and
(ii) Quake 3 Arena CE [NoctemWare 2005]. These games exploit
3D hardware acceleration of recent mobile devices and allow the
user to play at an interactive frame rate. The main limitation of mo-
bile implementations of Quake III rendering engine (and of game
engines in general) is the scarce flexibility: they are designed to
support only the styles of interaction and the navigation modes that
are needed by the game.

In the literature, Lipman’s work [Lipman 2004] for visualizing steel
structures on mobile devices and Nurminen’s system [Nurminen
2006] for rendering 3D city models on mobile devices can be inter-
esting for our work.

Lipman [Lipman 2004] uses PDAs to visualize VRML models of
steel structures. These structures can be modeled by using CAD
environments and then exported to VRML. Lipman’s application
allows the user to display and interactively navigate around little
steel structure models. However, with large models the user cannot
interactively navigate. The only way to move around in the VRML
model is with predefined viewpoints. Lipman’s focus is only on
efficiently organizing the VRML files that contain the steel struc-
ture to display using the Pocket Cortona VRML browser [Parallel-
Graphics 2004] without any optimization of rendering algorithms.

Nurminen [Nurminen 2006] proposed m-LOMA, a client-server
system that uses a mobile 3D city map to give location-based infor-
mation in cities. A combination of server pre-processing, suitable
modeling methodologies and real-time rendering optimizations al-
lows the m-LOMA client to render 3D city models augmented
with location-based information on smartphones and PDAs. The

m-LOMA server uses pre-processed PVS for static structures, but
not portals because urban scenes cannot be bundled into cells as
easily as indoor scenes. Moreover, for dynamic entities, the m-
LOMA server applies real-time virtual voxel based culling, which
in essence is an implementation of a cell-to-cell visibility scheme.
The m-LOMA client implements a real-time view frustum culling
algorithm.

3 Proposed solution

3.1 System overview

Our solution for rendering large X3D building models on mobile
devices is based on both cell-to-cell and cell-to-geometry visibility,
exploiting a double level of culling to reduce the quantity of data
to be held in the main memory of the device and the amount of
polygons that need to be processed.

To apply a portal culling method, one has first to identify rooms and
connections among rooms inside the architectural model. Thus, the
model is physically subdivided into cells and portals, representing
respectively rooms and connections. This can be done manually,
maintaining the topological structure of the scene by having each
room contained in a single cell and each cell containing exactly one
room. An automatic method for scene subdivision can be used as
well, provided that its output is a set of cells connected to each other
by portals.

If the input model is a X3D model, subdivision into cells and
portals can be carried out in two ways: (i) by including metadata
to identify cells and portals in the X3D file, or (ii) by associating
each cell with a distinct X3D file that contains the whole geometry
of that cell and having an external file to list cells and portals
and their boundaries. The first approach strictly follows the X3D
standard and does not rely on external files, but forces one to load
in memory and parse the whole X3D file to get the boundaries of
all cells and portals of the scene and to build a visibility graph for
the scene. This wastes precious memory space and CPU bandwidth
and, considering the limitations of mobile devices, is not viable for
large models. This problem can be solved by pre-processing the
X3D file on a workstation, generating a compact list of cells and
portals in an external file, and copying it on mobile device storage,
but the solution does not follow anymore the X3D standard.
Moreover, metadata about cells and portals in the X3D file become
unnecessary after the pre-processing stage.

The second approach does not strictly follow the X3D stan-
dard and needs more work in case of changes in the displayed
model (one has to modify one or more X3D files and the external
file), but overcomes the disadvantage of the first without the need
for a pre-processing stage, and allows one to include only the
needed information in the X3D files. Moreover, there is no need
for a client-server architecture and each employed X3D file defines
the part of the cell-to-geometry relationship concerning the cell
it represents. Marvie and Bouatouch [Marvie and Bouatouch
2004] proposed a solution that follows this approach because it
stores each cell in a distinct file, but is slightly different because it
defines new X3D nodes for cells and portals and encodes visibility
relations in the X3D files where cells are described. There is no
external file that contains only cells and their boundaries, so it is
necessary to load the whole cell to know its properties.

Figure 1 illustrates the high-level architecture of our solution for
rendering large X3D buildings on mobile devices. We follow the
second above mentioned approach for describing cells and portals:
each cell is stored in a separate X3D file and an external XML file,
calledtopological file, is used to store the list of all cells and por-



Figure 1: Architecture of the proposed solution

tals with their boundaries. The cells described by the X3D files
are not overlapping to simplify inclusion tests. This simplification
does not lead to less expressive power: all buildings can be rep-
resented because convex rooms can be described by single cells
and non-convex rooms can be subdivided into sets of convex cells.
Moreover, there is not a complexity growth of the scene in terms of
polygons. In the topological file, cells are identified by X3D file-
names, together with the specifications of their boundaries (stored
as a set of planes defining a convex volume) representing the ex-
tension limits for the cells and the number of triangles of the cell;
a portal is defined as an arbitrarily shaped polygon and the pair of
rooms it connects. All the cell-to-cell visibility relationships are
stored as pairs of cells connected by a portal inside the topological
file; this allows us to build a visibility graph for the scene without
loading any X3D file from storage memory. We chose the X3D
format and not a compressed binary format for representation of
buildings for two reasons: (i) prototyping and design of buildings
is easier also for people who are not very skilled with 3D render-
ing (the most popular CAD and 3D modeling systems can export
to VRML or X3D), and (ii) cells can be easily exchanged between
different users.

The system we implemented is composed by two main modules:
the X3D playerand theCell Manager. The X3D player loads in
memory, flushes from it and renders one or more X3D files ac-
cording to the commands received from the Cell Manager. The
X3D player we use is the latest version of MobiX3D, a system that
we originally proposed in [Nadalutti et al. 2006] and was later re-
fined [HCI Lab – University of Udine 2006] with a basic view frus-
tum culling algorithm. In this case, the view frustum culling of
MobiX3D will be applied after the portal culling algorithm imple-
mented by the Cell Manager. The user can navigate through the
scene by using the interface of MobiX3D, described in [Nadalutti
et al. 2006]. Three basic navigation modes are implemented (pan,
walk and examine) and collision detection is not supported.
The Cell Manager is the module that manages the rendering of
the cells. It initially builds the visibility graph of the scene start-
ing from the topological file, then it determines the cell where the
viewer is (viewer’s cell) and the other cells that are visible from
the viewer’s position (visible cells). It indicates to the X3D player
which X3D files to render, load or flush, according to the viewer’s

movements. Cells are dynamically loaded into main memory when
they are visible and flushed from it when they have not been vis-
ible for a specified amount of time. Cells are not too large (each
cell can be contained in the main memory) and if the size of visible
cells is more than the main memory, the most distant visible cells
are culled by using fog. This allows for the handling of massive
models that could not possibly fit entirely into the main memory of
the device. A multi-threaded approach was adopted to load cells so
that loading is not interrupting.

To determine viewer’s cell and visible cells, the Cell Manager uses:

• the visibility graph of the scene;

• the modelviewand theprojection matrices [Shreiner et al.
2005];

• the exact position of the viewer;

• the boundaries of all the cells in the model.

The viewer’s cell is determined by a simple linear check of all the
cells, but it can be optimized by exploiting more complex space
division data structures. To check whether the viewer is inside or
outside the boundaries of a cell, the Cell Manager checks her po-
sition with every plane defining the convex volume of the cell. To
compute visible cells, a portal culling algorithm similar to the one
of [Luebke and Georges 1995] is adopted. That algorithm exploits
only cell-to-cell visibility, while our algorithm exploits also the dis-
tance of the cells from the viewer and cell-to-geometry visibility. In
the following, we describe in detail our portal culling algorithm.

3.2 Portal culling algorithm

As in [Luebke and Georges 1995], our algorithm starts from the
viewer’s cell, considers all of its portals and checks whether they are
visible or not: if a portal is visible, the cell connected to the viewer’s
cell by the portal will be visible as well. The same portal check
method can be recursively applied to the adjacent cells connected
by a visible portal.

More formally, we can define thevisible screen area(VSA) of a
cell as the part of the viewport where the rendered cell can be seen,



Figure 2: On the left, map of a set of cells. Viewpoint and visible parts of thecells are highlighted. On the right, the corresponding rendering.
The original geometry for portals is highlighted by dashed lines, while actual VSAs are represented by thick lines.

i.e. the part of the viewport where no occluders have been rendered.
We can notice that the VSA of a cell is usually reduced by passing
through a portal. Thus, the portal check method described above
can be refined using VSAs instead of the whole viewport of the por-
tals. We represent a VSA using its axis-aligned bounding rectangle
(Figure 2), or in an analogous way, indicating it with ranges on the
two viewport axes. This simple representation has both advantages
and disadvantages: it is conservative (by definition of the bounding
rectangle) and can be handled in constant time (since we are using
a fixed-size and axis-aligned representation instead of an arbitrary
polygon) but there are situations where the bounding rectangle can
be too loose thus leading to the computation of a VSA much bigger
than the actual portal area. We chose this solution for its constant
performance qualities.

The next four subsections illustrate the pseudocode of our algo-
rithm. The first subsection deals with the culling algorithm that
exploits cell-to-cell visibility, and is very similar to Luebke and
Georges’s algorithm, the other three discuss three optimizations of
the algorithm: the first two have been introduced by us and respec-
tively exploit distance from the viewer and cell-to-geometry visibil-
ity, the third is an improvement of the solution proposed in [Luebke
and Georges 1995] for avoiding multiple renderings of the same
cell.

3.2.1 Cell-to-cell visibility

Figure 3 presents the pseudocode of the culling algorithm. The
HandleCell function has two parameters: the cell that has to be
rendered (Cell) and its VSA (VSA). WhenHandleCellis called on
a cell, it first renders the cell by calling the functionRenderCell.
This function descends the tree hierarchy of the X3D file that rep-
resents the cell (Cell.X3D) and renders the geometry found in all
nodes of the X3D file. TheHandleCellfunction then proceeds by
considering every portal belonging to the given cell and tests for its
visibility within the VSA of the cell. If the portal turns to be visi-
ble, the VSA is updated by computing the intersection between the
VSA of the cell and the bounding rectangle for the projected portal
vertices; theIntersectfunction computes an axis-aligned rectangle
for the projected portal vertices and then performs an intersection
of such rectangle with the VSA, resulting in another axis-aligned
rectangle. Finally, theHandleCellfunction recursively calls itself
by passing the cell on the other side of the portal (Portal.TargetCell)
and the newly computed VSA as parameters. The visible cells are
rendered by calling theHandleCellfunction with the viewer’s cell
and the full screen viewport as parameters.

HandleCell(Cell, VSA)
1. RenderCell(Cell.X3D)

2. for each Portalin Cell.Portals

3. if ¬(IsPortalCulled(Portal, VSA))

4. NewVSA := Intersect(Portal, VSA)

5. HandleCell(Portal.TargetCell, NewVSA)

6. endif

7. endfor

Figure 3: Pseudocode for the culling method, showing the recursive
call on visible adjacent cells.

To decide whether the portal polygon is inside or outside the cell
VSA, we perform a number of tests on each of its vertices. These
tests are performed by theIsPortalCulledfunction (Figure 4). This
function has two parameters: a portal (Portal) and the VSA of a cell
that is on one side of that portal (VSA). We consider five culling
possibilities indicated in the pseudocode by five culling flags:CullZ
means that the portal is completely behind the viewer,CullX− and
CullX+ mean that the portal is totally on the left or the right of
the VSA, CullY− and CullY+ mean that the portal is totally be-
low or above the VSA. We start by initializing these culling flags to
true, and subsequently set them tof alse if we find a vertex (Ver-
tex) of the portal polygon that fails the respective culling test. The
CullZ test is performed in world coordinates: VertexT is Vertex
transformed using the modelview matrix; in the pseudocode we as-
sume that the viewer is on the origin(0,0,0) looking towards the
negative direction of the Z-axis: this means that a vertex that has az
value (VertexTz ) less than zero will be in front of the viewer and not
behind. TheCullX andCullY tests are performed in canonical view
coordinates, therefore the vertex is further transformed (VertexP)
using the projection matrix;x andycoordinates of the projected ver-
tex (VertexPx , VertexPy ) are compared to the boundaries of the VSA
and culling flags are updated accordingly. The left, right, lower and
upper boundary of the VSA are respectively defined as VSA.X−,
VSA.X+, VSA.Y−, VSA.Y+. The algorithm finally returnstrue
in the case that at least one of the culling flags is stilltrue, which
means that no vertex has failed the culling test associated to such
flag.

3.2.2 Culling based on distance

We propose a further culling based on distance from the viewer: it
is possible to cull objects that are more distant than a given thresh-



IsPortalCulled(Portal, VSA)
1. CullX− := CullX+ := CullY− := CullY+ := CullZ := true

2. for each (Vertexin Portal)

3. VertexT := Vertex * ModelviewMatrix

4. if (VertexTz < 0) CullZ = false

5. VertexP := VertexT * ProjectionMatrix

6. if (VertexPx ≥ VSA.X−) CullX− := false

7. if (VertexPx ≤ VSA.X+) CullX+ := false

8. if (VertexPy ≥ VSA.Y−) CullY− := false

9. if (VertexPy ≤ VSA.Y+) CullY+ := false

10. endfor

11. return CullX− or CullX+ or CullY− or CullY+ or CullZ

Figure 4: Pseudocode for the function that tests whether a portal is
inside a VSA or not.

old. When properly tuned, this distance culling can help removing
the processing of geometry that would end up to be too small to
be appreciated on the display of a mobile device. Moreover, it is
used in our solution to avoid that the size of visible cells becomes
greater than the main memory of the device. This distance is tuned
empirically, and its optimal value can vary based on the rendered
model. This solution can be made seamless by having objects next
to the threshold to vanish into fog. This culling test is inserted in-
side theIsPortalCulledfunction presented in Figure 4 by adding a
new culling flag namedCullFog in line 1 and inserting the line

if (VertexTz ≥ -FogThreshold) CullFog =false

between line 3 and 4 in the pseudocode because the test is per-
formed in world coordinates. We use the opposite of the value of
culling distance (FogThreshold) because we assume the viewer be-
ing in the origin(0,0,0) and looking toward the negative direction
of the Z-axis. The correct distance check would actually be

if (||VertexT || ≤ FogThreshold) CullFog =false

where|| · || is the norm of a vector. The calculations involved to
compute a vector norm include a costly square root and various
multiplications, while the used method employs only a comparison,
being at the same time quicker and conservative.

3.2.3 Cell-to-geometry visibility

To handle cell-to-geometry visibility, we augment the tree hierar-
chy already available in X3D files with a bounding box for each
node. Figure 5 describes the function used to cull invisible branches
of such a tree. This function has two parameters: an X3D node
and the VSA of the cell it belongs to. The algorithm is quite
similar to the one used for cell-to-cell visibility culling: a first
test is performed to check whether the bounding box of the node
(Node.BoundingBox) is totally outside the VSA or not. If it is not
outside the VSA the node geometry is rendered (Node.Geometry)
and theCullAndRenderNodeis recursively called on all the children
nodes (Node.Children).

The functionIsBoundingBoxVisiblecan be implemented in a way
similar to IsPortalVisible, because we need to consider each vertex
of the bounding box to check if it is behind the viewer, to test its
position in relation with the boundaries of the VSA and to check
whether its distance from the viewer is less than the fog threshold.
As with portals, if there is at least one test that does not fail with any
vertex, then the bounding box and its content can be safely culled.

CullAndRenderNode(Node, VSA)
1. if IsBoundingBoxVisible(Node.BoundingBox, VSA)

2. RenderGeometry(Node.Geometry)

3. for each (Child in Node.Children)

4. CullAndRenderNode(Child, VSA)

5. endfor

6. endif

Figure 5: Pseudocode for the function that performs cell-to-
geometry visibility culling and geometry rendering.

We can finally replace the line

RenderCell(Cell.X3D)

in Figure 3 with the line

CullAndRenderNode(Cell.X3D, VSA)

to exploit both cell-to-cell and cell-to-geometry visibility culling.

3.2.4 Avoiding multiple rendering of the same cell

The proposed method can lead to multiple renderings of the same
objects. This can happen when a cell is visible through more than
one portal. Since portals are not overlapping, different parts of the
cell will be visible each time. An object might anyway be visi-
ble through more than one portal, thus leading to multiple render-
ings. This is not desirable when using particular effects, especially
those using alpha blending. The solution proposed by Luebke and
Georges [1995] is to mark each object as rendered so that it cannot
be rendered more than once per frame; they report that this method
has generally proved more efficient than rendering the objects more
than once and culling them each time using the different VSAs, es-
pecially when rendering costs are much greater than culling costs.
Our solution is similar. Instead of marking objects as rendered,
which would require adding flags inside the inner data structures of
the X3D player and the reset of such flags at every frame, we use
a queue for all the cells to be rendered for a given frame. Cells are
inserted into this queue at most once per frame, while a separate list
is maintained for each cell, containing the VSAs through which the
relative cell is visible. The synchronous rendering call represented
by

CullAndRenderNode(Cell.X3D, VSA)

in Figure 3 is therefore replaced by a call to

EnqueueCell(Cell, VSA)

that enqueues cells and VSAs. TheCullAndRenderNodecall is per-
formed when all the cells previously inserted in the queue are finally
rendered. Cell-to-geometry culling is here performed by testing
bounding boxes with the VSAs for the corresponding cell, until the
test passes for one of them or fails for all of them.

4 Implementation

We implemented our system in C++ and OpenGL ES. We had to
follow the OpenGL ES 1.0 Common Light (CL) specifications be-
cause that is the interface provided by the graphics processor of the
accelerated device we used for testing (Dell Axim x51v with Intel
2700G GPU).



4.1 Some implementation issues

OpenGL ES 1.0 CL does not allow to query the driver for dynamic
information, including the modelview and projection matrices. We
thus had to store a local copy of these matrices and update their
values each time an OpenGL function that changes them in driver
is called.

We also tried to integrate stencil buffer culling into the algorithm.
The idea was to associate a unique ID to each portal and render por-
tals into the stencil buffer using the IDs. Then, cells that are visible
through such portals are rendered onto the frame buffer only when
corresponding pixels into the stencil buffer contain the given ID.
This would reduce the amount of processed data by introducing a
further occlusion culling step because the rendered portals would
be z-culled when compared with occluding geometry in front of
them. A simpler solution could consist in organizing the geometry
in front-to-back order, achieving z-culling. However, this solution
is less easy to extend for implementing transparency support than
the solution based on stencil buffer because correct transparency
support requires back-to-front rendering.
There is anyway a problem with the basic view frustum culling im-
plemented by MobiX3D: when approaching a portal, the portal will
be culled by the near plane of the view frustum and not rendered
onto the stencil buffer, and consequently the whole room behind
the portal would not be visible causing annoying popping artifacts.
We plan to investigate ways to solve this problem as a future work.

5 Results

We tested the proposed approach on a Dell Axim X51v, equipped
with a 624MHz Intel processor, 64Mb of RAM memory and the
Intel 2700G for hardware 3D acceleration. Tests were carried out
at 480x640 resolution.

The model used for the tests was a reproduction of the main build-
ing of our University, made of 28608 triangles. We started from
a 3D model that was fully textured, subdivided into 39 cells and
with 56 portals. The cells were too big and dynamic loading and
flushing to and from memory was too slow, mainly because of file
I/O operations. The lack of a texture caching system (which we are
planning to investigate as a future work, together with the possibil-
ity of loading each texture on a separate thread) also led to loading
time inefficiencies, because textures had to be loaded from storage
as a cell became visible. With low-resolution textures, the mean
loading time for a cell is about 18 seconds, while the mean loading
time of a cell without textures is about 6 seconds (2 seconds for file
I/O and 4 seconds for parsing). We therefore decided to substitute
textures with colored materials; the model was also subdivided into
smaller cells, leading to the final 3D model used for testing and
consisting of 93 cells and 114 portals. The mean loading time for
the smaller cells is about 2.5 seconds (1 second for file I/O and 1.5
seconds for parsing). The number of triangles per cell varies from a
minimum of 102 up to a maximum of 452, and cells have between
2 and 4 portals. Figure 6 shows the subdivision in cells and portals
of a part of the 3D model.

The achieved rendering speed using this final 3D model varies de-
pending on the number of visible cells. We tried to display the
whole model without using the portal culling algorithm, but the sys-
tem crashed because there was not enough memory to load all the
cells. Figure 7 illustrates a scene where 4 cells are visible, Fig-
ure 8 a scene where 2 cells are visible. Table 1 reports measured
rendering speeds (in frames-per-second) both with and without the
distance culling based on fog described in Section 3.2.2. Render-
ing speeds are slightly lower when using the fog because a further
processing step is necessary to apply fog. This should not be mis-

Figure 6: Part of the 3D model used for the tests with the corre-
sponding subdivision in cells and portals. Portals are represented
with black thick lines.

leading: enabling fog pays off when rendering models with long
corridors because the farthest cells are culled by the fog and there-
fore the number of visible cells is smaller than it would be when
fog is disabled.

Cells Triangles Without fog With fog

1 188 56.4 fps 42.7 fps

2 532 35.8 fps 34.7 fps

3 766 22.6 fps 20.7 fps

4 1156 19.4 fps 18.6 fps

Table 1: Rendering speeds (in frames-per-second) of the system
both without and with the distance culling based on fog.

The results are encouraging and the large 3D model can be explored
with satisfactory frame rates. The biggest problem encountered was
the speed of loading and flushing cell data (both textures and ge-
ometry) between the storage and main memory. Moreover, it is not
possible to keep more than 2000 triangles in memory. Anyway,
these are not limitations of the proposed method, but optimization
issues of X3D loading and resource handling code. We plan to solve
these issues through the:

• optimization of X3D parsing code to obtain shorter loading
times for the cells;

• design of a texture and geometry caching method to reduce
the stream of data from storage to main memory;

• design of a predictive scheme to load cells in advance instead
of loading them when they become visible.

6 Conclusions and future work

This paper proposed a system for interactive walkthrough of 3D
models of large buildings on mobile devices. The system exploits
a combination of view frustum and portal culling to minimize the
non-visible geometry that is processed. The performance of our
system in the visualization of a model composed by 28608 poly-
gons shows the feasibility of using PDAs for interactively display-
ing large X3D building models.

Our research is now proceeding in two main directions. First,
we will work at improving our visualization algorithms both in
MobiX3D and in the portal culling system. MobiX3D improve-
ments include incremental loading of X3D models, optimizations
on the pre-processing stage during file loading (e.g. computation
of bounding boxes) and integration of LOD (level of detail) sup-
port. Portal culling improvements include the implementation of
the stencil culling optimization discussed in Section 4, a faster



Figure 7: Part of the 3D model of the University of Udine (4 visible cells) with a photo of the corresponding area.

Figure 8: Part of the 3D model of the University of Udine (2 visible cells) with a photo of the corresponding area.



search method to calculate the cell where the viewer is and a method
to sort cells in a back-to-front order before rendering them, as
needed for correct transparency support.

Second, we will work at mobile 3D guidance for evacuation train-
ing. We will implement and test a system that generates evacuation
paths based on the topology of the building and displays them on
mobile devices. Then, we will employ RFID tags to make the sys-
tem location-aware.
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