
Decluttering of Icons based on Aggregation
in Mobile Maps

Stefano BURIGAT1 and Luca CHITTARO1

1HCI Lab, Department of Math and Computer Science, University of Udine, Italy

Abstract. In this chapter, we will deal with cluttering issues associated with the
visualization of a high number of icons, representing Points of Interest, on mo-
bile maps. Clutter is a frequently occuring problem that makes it difficult to un-
derstand the visualization and has the even more critical effect of masking data.
As the user zooms out, the positions of icons increasingly converge until they
partially or entirely overlap each other. In regions of high icon density, this ef-
fect impairs even the effectiveness of a close-up view. Finding ways to visual-
ize icons in a comprehensible uncluttered fashion is a challenging task. We will
first discuss techniques which have been previously proposed in the literature
for the automatic placement of labels on maps, a problem which is closely re-
lated to the placement of icons. We will then propose an approach for icons -
aggregation - aimed at mitigating cluttering issues when icon density is high.
The approach is based on an aggregation algorithm to reduce the total number
of icons that need to be displayed and on the design of icons that could function
as both individuals and aggregates.

1.1 Introduction

In recent years, a number of map-based applications and services have been made
available to users of mobile devices, with a particular emphasis on Personal Digital
Assistants (PDAs). In this context, maps often need to be adapted to specific user re-
quirements which are not known a priori. Therefore, one cannot pre-compute and
store all possible maps that may be needed by users but they have to be generated in
real-time. This is a particularly challenging task that requires, for example, automatic
placement of text labels and icons which are essential parts of any map. Unfortu-
nately, the design of map-based applications is constrained by device limitations:
techniques and practices that are effective in the desktop scenario cannot be simply
adapted to mobile devices but must be redeveloped to achieve usability and perform-
ance goals on such equipment and novel solutions are often needed to cope with spe-
cific issues (Chittaro, 2006).

In this chapter, we will deal with the specific problem of visualizing a large num-
ber of icons, each one representing a Point of Interest (POI) on mobile maps. The
visualization of many icons on the same screen often leads to cluttering issues, espe-
cially when users perform zoom-out operations and icons begin to touch and overlap
each other. In case of a high icon density, this may degrade the effectiveness of even a

Fig. 1.1. An example of icon cluttering: the displayed icons represent restaurants

in the Manhattan area. Many icons overlap and have masked almost all other map
features of an area.

close-up view of a map and mask other important map features such as roads. For ex-
ample, displaying the location of restaurants as icons on a map might work very well
at a large scale, but it could become useless at smaller scales when most icons over-
lap, as illustrated in Fig. 1.1. Typically, some simple criteria are used to limit the
number of icons to be displayed. A widespread but extreme solution lies in displaying
only those POIs selected by the user from a list. A slightly more flexible solution sub-
divides the list of all POIs (ordered by name or other criteria) in pages and displays
only one page at a time (consisting of a fixed and usually limited number of POIs).
However, these techniques are only suitable for the simultaneous display of map con-
tents and a (mostly) textual list of POIs. They are hardly applicable to the mobile con-
text characterized by limited screen space. Moreover, reducing the number of POIs to
be displayed may not solve all overlapping issues, as illustrated in Fig. 1.2.

Finding ways to visualize icons in an easy-to-understand uncluttered fashion, while
satisfying various users’ requirements is a challenging task. The limitations of mobile
devices further exacerbate the problem. For example, since only limited screen space
is available, the amount of icon clutter on overviews increases with respect to desktop
screens, and because of the limited processing power, the use of powerful but compu-
tationally intensive algorithms is discouraged.

While many papers address problems pertaining to the design of icons or the en-
coding of values with icons (Wong and Bergeron, 1997), the problem of how to prop-
erly place icons on maps avoiding clutter has been scarcely investigated. A possible
strategy to tackle the problem is to adapt methods and algorithms that have been de-
veloped for the closely related problem of label placement on maps. In the first part of
this chapter, we will thus describe label placement techniques which have been previ-
ously proposed in the literature, mainly for desktop map-based applications, and

Fig. 1.2. An example of icon cluttering with a lim-
ited number of icons.

which are of interest for fast icon placement. We will then propose techniques based
on an approach – aggregation – that aims at handling high icon density. The approach
is based on an icon aggregation algorithm to reduce the total number of icons that
need to be displayed and on the design of icons that could function both as individuals
and aggregates in such a way that they can convey critical information on the associ-
ated POIs and possibly provide access to less critical information by tapping on them.
We will conclude with a discussion of future research directions on icon decluttering
techniques for mobile map-based applications.

1.2 Label placement in map-based applications

Placing text labels on maps while avoiding overlaps with cartographic symbols and
other labels is a fundamental problem in the field of cartography. Label placement is
still often performed manually (Cook and Jones, 1990), although several techniques
have been proposed to automate it.

Usually, there are three different label placement tasks: labeling of area features
(e.g., countries, lakes, oceans), line features (e.g., roads, rivers), and point features
(e.g., cities on small-scale maps, mountain peaks, points of interest). When multiple
features have to be handled, these tasks share a common combinatorial difficulty in
automatic label placement.

Most techniques for automatic label placement presented in the literature focus on
point features. To formulate the point-feature label placement (PFLP) problem as a
combinatorial optimization problem, it is necessary to define a search space and an
objective function.

An element of the search space (called labeling) is a mapping of point features into
label positions, where the potential label positions for a feature are usually taken from
an explicitly enumerated set. A typical set of four possible label positions for a point
feature is shown in Fig. 1.3.

Fig. 1.3. A set of potential label positions for a feature located in the center. Each rectan-
gle corresponds to a region where the label may be placed and the values indicate the de-

sirability of each position (lower values corresponding to preferred positions).

The objective function assigns to each labeling a score that corresponds to the
quality of that labeling. Labeling quality depends on many factors, including map
purpose and characteristics of human visual perception. A commonly used objective
function for the PFLP problem was proposed by Yoeli (1972). In Yoeli’s proposal,
the quality of a labeling depends on the following criteria:

• The amount of overlap between labels and graphical features (including other la-
bels);

• Cartographic preferences among potential label positions (a canonical set is shown
in Fig. 1.3);

• The number of point features that are left unlabeled.

The objective function specifies how to compute a numerical score from these cri-
teria. Low scores are usually assigned to better labelings, so that the goal of the search
is to minimize the objective function.

Unfortunately, while some simple restrictions of the label placement problem can
be easily solved in polynomial time (Formann and Wagner, 1991), the general search
problem and many of its interesting variants are Non-deterministic Polynomial-time
hard (NP-hard) (Marks and Shieber, 1991). Therefore, a complete search algorithm
could be impractical and a practical algorithm incomplete. Research efforts have then
been made to find heuristic methods that work acceptably in practice, although they
may not exhibit guaranteed performance.

In the following sections, we will briefly describe some of the approaches to label
placement proposed in the literature. We will also introduce an established data struc-
ture, the conflict graph, which supports label placement and plays a fundamental role
in our icon aggregation approach.

1.2.1 PFLP algorithms

A basic approach to PFLP is to perform an exhaustive search of the solution space.
The algorithms based on this approach process points in a prescribed order, trying to
place each label in a position that is currently unobstructed. When it is impossible to
label a point, either because there are no positions without conflict or because all
available positions have been tried, these algorithms backtrack to the most recently

labeled point and consider the next available position. Exhaustive search algorithms
stop when an acceptable labeling has been identified or when the entire search space
has been explored. Various heuristics, such as variable ordering, value ordering,
source-of-failure and pruning, can be employed to improve the algorithm perform-
ance (Korf, 1988). Variable ordering consists in processing the most difficult points
first, that is, those points which have fewer labeling options available. Value ordering
is based on a prioritization of potential label positions for each point so that later con-
flicts can be avoided. A common method to achieve this goal is to always choose the
label position which has the smallest number of conflicts with other features or labels.
The source-of-failure heuristic backtracks to one of the points conflicting with the
currently considered point, instead of backtracking to the most recently placed point.
Pruning heuristics are used to eliminate whole areas of the search space from consid-
eration. For example, it is possible to avoid considering label positions which conflict
with a large number of surrounding positions. Unfortunately, regardless of these heu-
ristics, exhaustive search is impractical as a general solution to the PFLP problem be-
cause the search space has an intrinsic exponential nature.

More efficient algorithms are based on avoiding the backtracking strategy of ex-
haustive search, thus limiting the scope of the search. Unlike exhaustive search algo-
rithms, these greedy algorithms (Christensen et al., 1995) may leave unlabeled any
point whose label cannot be placed, or may allow a certain degree of overlap among
labels, thus providing a tradeoff between labeling quality and computational cost.
Like exhaustive search algorithms, greedy algorithms exploit various heuristics, such
as those previously described, to guide the search and help identify reasonable label-
ings.

The quality of labelings produced by a greedy algorithm can be considerably im-
proved if labelings are subsequently repaired by local alteration. Gradient-descent al-
gorithms (Hirsch, 1982; Christensen et al., 1995) can be used for this purpose. Start-
ing from an initial labeling, usually obtained by placing labels randomly in any of the
available candidate positions, the basic idea of gradient descent is to iteratively im-
plement the label repositioning by moving in a descending direction towards a mini-
mum of the objective function.

The main weakness of gradient-descent algorithms is their inability to escape from
local minima of the objective function. Stochastic methods such as simulated anneal-
ing (Kirkpatrick et al., 1983) attempt to solve this issue by incorporating a probabilis-
tic or stochastic element into the search, allowing movement in different directions
from that of the gradient, thus including the possibility to temporarily worsen the ob-
jective function.

Various other approaches, such as integer programming (Zoraster, 1990), genetic
algorithms (Verner et al., 1997) and tabu search (Yamamoto et al., 2002), have been
proposed in the literature but are beyond the scope of this chapter. For an extensive
list of references on map labeling, we refer the reader to the Map-Labeling Bibliogra-
phy web site (Wolff, 2006).

1.2.2 The conflict graph

The conflict graph is a structure that describes conflicts due to overlaps between label
positions or, more accurately, between the rectangles defining label positions (see Fig.
1.3). Each node of the conflict graph corresponds to a label position while the edges
of the graph link conflicting label positions. More formally, a conflict graph can be
defined as an undirected graph G = (N, E), where N is a list of nodes and E is a list of
edges. The degree of a node is the number of incident edges for that node and is a
measure of the amount of conflict of the corresponding label position with other label
positions. The higher the degree of a node, the more difficult it is to place the associ-
ated label on a map.

The conflict graph can be represented as an adjacency matrix, where rows and col-
umns represent nodes and each entry is either 1 if the corresponding nodes are con-
nected or 0 if they are not connected. In an adjacency matrix, the degree of each node
is the sum of values in a line or in a column. An alternative representation of the con-
flict graph is an adjacency list, where each node is associated to the list of nodes it is
connected to.

To build the conflict graph, it is necessary to investigate overlaps among the con-
sidered label positions. A naive approach to perform this test is the all-pairs algorithm
where each label position is tested against all other ones. In spite of its simple princi-
ple, this approach has a quadratic cost in the number of label positions and, therefore,
is too time-consuming and inappropriate except for very small sets of labels. A more
efficient algorithm is based on the sweep-line approach (de Berg et al., 1997). In gen-
eral, a sweep-line algorithm detects all intersections among a set of axis-parallel rec-
tangles in the plane by making an imaginary vertical line sweep across the plane from
left to right. The algorithm is supported by two data structures, called event-point
schedule and sweep-line status. Event points are the x-values where the sweep line
must stop because either its status changes or intersections have to be reported. In the
case of labels, event points are the x-values of the left and right edges of the rectan-
gles defining label positions and the event-point schedule is the sorted list of these
points. The sweep-line status stores intervals corresponding to the intersections of the
sweep line with the given rectangles. The endpoints of the intervals are the y-values of
the lower and upper edges of the input rectangles. Initially the sweep-line status is
empty. When a left edge of a rectangle is encountered during the sweep, the interval
corresponding to the edge is inserted into the sweep-line status. A rectangle is re-
ported if its interval is currently in the sweep-line status and intersects the new inter-
val. When a right edge of a rectangle is encountered, the corresponding interval is de-
leted from the sweep-line status. The label overlap problem is thus reduced to the
problem of maintaining a set of intervals in such a way that they can be efficiently in-
serted and deleted, and interval-intersection queries can be answered quickly. An in-
terval-tree data structure (Edelsbrunner, 1980) can be employed to achieve this result.
The computational complexity of the sweep-line algorithm is O(NlogN + I) where N
is the number of rectangles and I is the number of intersections.

The conflict graph can be used to reformulate the map labeling problem as a
maximum independent set problem (Strijk et al., 2000). In particular, finding a solu-
tion for the map labeling problem is equivalent to finding a subset S of the vertices of
the graph with maximum size, for which there is no edge (u,v) in the graph that con-

nects vertices u and v in S. Moreover, cost values can be assigned to the vertices to
model cartographic preferences for the candidate label positions and the sum of the
costs of the vertices in S is minimized with respect to the size of S. The vertices in S
thus indicate the candidate positions that must be used for labeling the points and, if
none of the vertices related to a particular point appears in S, then the point remains
unlabeled.

Various algorithms have been proposed to solve the labeling problem as a maxi-
mum independent set problem. For example, Kakoulis and Tollis (1998) propose a
general approach to labeling based on the conflict graph and its connected compo-
nents. They use a greedy heuristic for maximum independent set to split these com-
ponents into cliques (a clique in an undirected graph G, is a set of vertices V such that
for every two vertices in V, there exists an edge connecting the two). Finally they con-
struct a graph where the identified cliques and the features of the problem (points,
lines or area) become nodes. In this graph, a feature and a clique are joined by an edge
if the clique contains a candidate of the feature. A maximum-cardinality matching is
then used to obtain the final labeling. Wagner et al. (2001) present a fast, simple and
effective algorithm that can be applied to point, line, or area labeling. The input to the
algorithm is the conflict graph of the label candidates. The algorithm is organized into
two phases. In the first phase, a set of rules is used to simplify the conflict graph
without reducing the size of an optimal solution. The goal of this phase is to reduce as
much as possible the number of label candidates of the features. In the second phase,
a heuristic is employed to reduce the number of label candidates of each feature to at
most one. The heuristic is conceptually simple and consists in eliminating most trou-
blesome candidates first, by going through all features that still have the maximum
number of candidates and deleting the candidate with the maximum number of con-
flicts. This process is repeated until each feature has at most one candidate left and no
two candidates intersect.

Conflict graphs can also be pre-computed to improve the performance of label
placement algorithms when real-time generation of maps is necessary (e.g., in mobile
or web-based interactive applications). Indeed, in map-based applications, different
sets of labels are usually presented to the user at different zoom levels. For example,
an overview of a city map might contain only labels for the most important roads and
locations while more detailed views will show also labels of less important features.
Usually, the set of labels varies only at predefined zoom levels, called scale levels,
while it does not change at intermediate levels. As a consequence, panning and zoom-
ing operations that do not change the scale level will not change the amount of label
overlaps, since no labels will be added or removed from the considered map. There-
fore, it is possible to build conflict graphs (one for each scale level) in a pre-
processing phase, thus improving the global performance of the map labeling process
(Yamamoto et al., 2005). Pre-computation of the conflict graph is an acceptable ap-
proach for mobile map-based applications where the number of possible scale levels
is fixed. A more flexible approach is presented by Petzold et al. (2004), who propose
the reactive conflict graph, a data structure that is built in a pre-processing phase and
that models possible label conflicts regardless of map scale. In particular, specific al-
gorithms are used to identify the scale ranges at which potential conflicts among fea-
tures may occur and these ranges are assigned to the edges of the graph. The reactive
conflict graph is then stored in a three dimensional geometric data structure, e.g. the

3-D-R-Tree (Guttman, 1984), where the first two dimensions represent features ge-
ometry (or their bounding boxes) and the third dimension represents map scale. Dur-
ing labeling, the reactive conflict graph is queried to obtain a static conflict graph that
contains all objects to be labeled and all possible conflicts among these objects for a
specific map area and scale.

1.3 Decluttering of icons through aggregation

While, as shown in previous sections, a considerable effort has been devoted to
automating the placement of labels on maps, much less attention has been devoted to
the automatic placement of icons. This may be due to the consideration that icon
placement can be regarded as a special case of label placement. Indeed, if we treat
icons as labels, it is possible to use PFLP algorithms for automatic icon placement on
maps. For example, Harrie et al. (2005) discuss a method of combining label and icon
placement on maps created in real-time. Their method is based on reducing the search
space (by choosing a fixed number of possible placements for each object) before per-
forming a combinatorial optimization step based on simulated annealing to find a pos-
sible solution. The advantage of reducing the search space is that it allows to decrease
the processing time (or improve the solution within a limited number of iterations),
even if it may cause the optimal solution to be missed.

However, there are some subtle differences between the label placement and icon
placement problems that can make it inappropriate to directly apply known PFLP al-
gorithms to icons. First, labels can be removed from a map if, at the end of the label-
ing process, they cannot be placed without conflicts. This approach cannot be applied
to icons because their purpose, in most cases, is to point out the existence of specific
objects (POIs) that would be otherwise impossible to detect on a map. Their removal
would thus cause fundamental information to be missing. Second, unlike labels, POI
icons usually occupy a predefined fixed position with respect to their corresponding
map feature, generally being placed exactly over the feature location. This constraint
may be actually considered an advantage from the point of view of the computational
cost of the placement algorithms. Indeed, a larger set of icon positions would result in
a problem with a larger number of possible solutions and, in spite of the possible bet-
ter looking results, the growth in problem complexity would result in a much higher
computational effort. However, it must be noted that, despite the reduction in com-
plexity, the icon placement problem still remains NP-hard and heuristic algorithms
are thus needed to solve it within reasonable time.

In the following sections, we will describe icon aggregation, the approach we pro-
pose to tackle the icon placement problem while taking into consideration its peculi-
arities. The idea is to identify clusters of mutually overlapping icons and replace them
with special aggregator icons, whose purpose consists in pointing out the presence of
aggregated icons as well as providing users with a means to access information about
each of them. Selecting an aggregator icon produces a pop-up window that lists the
aggregated POIs and allows the user to obtain more information on each POI. This
technique can thus help to declutter the visualization, freeing map space by removing
all icon clusters without causing information to be permanently lost.

Fig. 1.4. An example of icon aggregation: all clusters of overlapping icons that

can be seen in the original map visualization in the upper left image are re-
placed by special icons representing aggregations (as displayed in the upper

right image). Selecting an individual icon allows one to obtain detailed infor-
mation on the corresponding POI, while selecting an aggregator icon produces

the list of aggregated POIs.

An example of aggregation is illustrated in Fig. 1.4: the image on the upper left
displays a map with 50 icons, some of which overlap; the image on the upper right
displays the same map after aggregation. As shown, clusters of overlapping icons
have been removed and replaced with aggregator icons that are graphically different
from those used for individual POIs (in this case, hotels). As illustrated in the bottom
left image, selecting an individual icon allows one to obtain detailed information on
the corresponding hotel (in this case its name, quality and address). Selecting an ag-
gregator icon instead produces the list of aggregated hotels, as illustrated in the bot-
tom right image, and each item in the list allows one to access detailed information on
the corresponding hotel. It must be noted that aggregation may also point out the
presence of icons that are almost completely hidden by others, as in the case of aggre-

Fig. 1.5. A set of overlapping icons (left) and the corresponding conflict graph

(right).

gator icon on the left of the pop-up window in the bottom right image. In the original
map, this masked data may have passed unnoticed.

 Although the idea behind aggregation is simple, different issues must be addressed
to realize the approach. The most important issue consists in designing appropriate al-
gorithms to identify clusters of icons and process them. Given the limitations of mo-
bile devices, we need algorithms that seek a compromise between cost and benefit,
with good quality (in terms of number of placed icons) and a short response time. In-
deed, since we do not actually lose data when performing aggregation, we may want
to sacrifice optimality of the final solution in return for improved performance. In this
way, it becomes possible to update the visualization in real-time, as users perform op-
erations (e.g., panning) that may change the set of icons to visualize.

Our implementation divides the task in two distinct subtasks that can be treated
separately. The first subtask is to identify overlaps between icons and build a static
conflict graph to store this information. As an example, Fig. 1.5 shows a set of over-
lapping icons and the corresponding conflict graph. We used the algorithm presented
in Section 1.2.2 to implement the conflict graph as an adjacency list. The second sub-
task is to process the information provided by the conflict graph so that a proper ag-
gregation strategy of the icons can be determined. We implemented different algo-
rithms to perform this subtask to identify the one providing the best trade-off between
performance and output quality.

1.3.1 Icon aggregation algorithms

The conflict graph described in the previous section is the input for the algorithm that
determines how to aggregate icons. Because of the limitations in terms of processing
power of the target platform on which aggregation has to take place, we chose to fa-
vor performance over quality, thus implementing only greedy but fast algorithms that
could provide acceptable results.

Given a conflict graph, the maximum aggregation algorithm produces a set S of
aggregated icons without conflicts. The algorithm works as follows:

Fig. 1.6. An example of icon aggregation with the maximum aggregation algorithm on a map
with 400 icons: the original map is displayed on the left, the result of the aggregation is dis-

played on the right.

• Initially, the solution set S is empty and the active node set ANS is equal to the full
node set N.

• If ANS is empty, exit with S as the result. Otherwise, repeat the following steps:

1. Calculate the degree of all nodes in ANS.

2. Select nmin, the node with the smallest degree in ANS.
3. If the degree of nmin is higher than 0 mark nmin as aggregator and mark all nodes

adjacent to nmin as aggregated to nmin.
4. Place nmin in the solution set S.
5. Remove nmin and all nodes adjacent to it from ANS.

An implementation of this algorithm builds a priority queue from the conflict
graph, ordering icons in ascending order of degree, where the degree of each icon is
the number of conflicts for that icon. At each step, the algorithm takes the icon with
the smallest degree, removes it from the priority queue and places it in the solution
set. The icon is marked as aggregator if its degree is higher than 0, i.e., if it overlaps
other icons in the queue. Moreover, all icons that are in conflict with the aggregator
are removed from the queue, they are marked as aggregated and the degrees of their
neighbors that are still in the queue are decreased accordingly. The process is then re-
peated until the priority queue is empty.

Fig. 1.6 shows an example of the output of this algorithm on an icon placement
problem involving 400 icons.

The algorithm is simple but provides good solutions in a time that depends on how
the priority queue is implemented. This is because the algorithm spends most of its
time adding elements to the queue, removing elements from the queue or changing
elements’ priority. In particular, updating the degree of the neighbors of all nodes ad-

jacent to nmin (which is needed after having removed these nodes from ANS) requires
an update of the priority queue and is quite time-demanding.

To implement the priority queue, we first tried the skip list data structure (Pugh,
1990). Skip lists are a probabilistic alternative to balanced trees (the most common
data structure for implementing priority queues) that allows operations such as inser-
tion and deletion of elements to be much simpler and faster than equivalent tree algo-
rithms. Unfortunately, in all our practical tests involving at most 400 icons, the cost
associated to the management of a priority queue based on a skip list was higher than
using a plainly ordered list. For the final implementation of the algorithm we thus
employed simple lists.

An interesting effect of using the maximum aggregation algorithm is that, by con-
sidering icons in increasing order of degree, the number of icons associated to each
aggregator tends to be balanced. Indeed, when icons with an initially high number of
conflicts are actually processed, it is highly probable that their degree has decreased
because of previous icon removals from the priority queue. This is desirable because
aggregations will be composed of an approximately similar (and limited) number of
elements, and users will appreciate this feature when examining the results on a map.

To further improve the performance of the aggregation process in terms of process-
ing time, we looked for a way to simplify the maximum aggregation algorithm. In
particular, since updating the priority queue after the degree of its elements has
changed is time-demanding, we tried avoiding this operation entirely. The resulting
fast aggregation algorithm goes through almost the same steps as the previous algo-
rithm but does not need to recalculate the degree of all nodes in the active node set
and to update the priority queue accordingly. By only processing icons in their initial

Fig. 1.7. Results of the proposed algorithms for icon aggregation on a set of 400 randomly

generated icons which are shaded in the background for reference purposes. The image on the
left refers to the fast aggregation algorithm and the image on the right to the maximum aggre-
gation algorithm. Despite the differences in the solution sets, the two images contain an ap-

proximately equal number of icons (108 vs. 109).

Fig. 1.8. Two different techniques to place aggregator icons: on the left, aggregators are

placed in the centroid of each cluster of aggregated icons (which are shaded in the background
for reference purposes); on the right, aggregators are in the same position as one of the icons
in each cluster. As can be seen, aggregators may overlap each other with the first technique.

ascending order of degree, this modified algorithm is faster than the original algo-
rithm while achieving similar results in terms of the number of displayed icons. Fig.
1.7 shows a comparison between the results of the two algorithms on a set of 400 ran-
domly generated icons.

A feature of these algorithms that we did not discuss so far is the placement of ag-
gregator icons. In the current implementation, aggregator icons are placed exactly at
the same position of one of the icons it aggregates. An alternative technique consists
in placing aggregator icons in the centroid of each cluster of icons to be aggregated.
The advantage of such a solution is that, from a geometric point of view, each aggre-
gator is in a more representative position since its Euclidean distance from any of the
aggregated icons positions is at most 2/)2*(a , where a is the size of the icon,
while in the current implementation this distance can reach)2*(a . Unfortunately,
this technique suffers from a disadvantage that substantially reduces its usefulness and
has prevented it from being adopted. Indeed, there is no guarantee that aggregator
icons will not overlap each other, as illustrated in Fig. 1.8.

1.3.2 Relaxing the overlap constraint

In most map-based applications, the purpose of icons is simply to point out the loca-
tion of specific geographic objects. Even when there are clusters of overlapping icons,
there is often enough visual information for the user to be able to distinguish individ-
ual icons and determine their location on the map. However, the algorithms presented
so far try to remove all overlaps among icons. While this is a fundamental require-

Fig. 1.9. Effect of relaxing the overlap constraint on icons: 20 more icons have been placed on
the map on the right where a certain degree of overlap is tolerated, with respect to the map on

the left where all overlaps have been removed.

ment for label placement, it might be considered too strict for icon placement. For ex-
ample, looking at Fig. 1.4 it is possible to identify clusters of icons that severely over-
lap as well as icons that barely touch each other. In this latter case, it could be better
to avoid aggregating the considered icons. In general, it would thus be useful to relax
the overlap constraint, aggregating icons in such a way that a certain degree of over-
lap between them is tolerated.

There are two possible ways to manage the relaxation of the overlap constraint.
The simplest approach, which is the one we implemented, consists in building a cus-
tom version of the conflict graph where an arc between two nodes is added only when
the degree of overlap between the corresponding icons exceeds a fixed threshold.
Standard algorithms such as those presented in the previous sections could then be
applied to perform the aggregation. A more flexible approach is based on associating
a cost value with each arc in the conflict graph, corresponding to the amount of over-
lap between icons, and then modifying the aggregation algorithm so that this value is
taken into consideration when processing icons. Fig. 1.9 shows how relaxing the over-
lap constraint leads to an increase in the number of icons that can be placed on a map
when compared to the standard non-overlap approach.

1.3.3 Increasing map legibility

The algorithms presented in section 1.3.2 aim at maximizing the number of icons
without conflicts displayed on a map, while keeping processing time short. By remov-
ing icons from the visualization, these algorithms also have the effect of enhancing
the legibility of the map (i.e., the portion of map that is not hidden by icons), espe-
cially in highly cluttered regions, as illustrated in Fig. 1.6. However, it is possible to

Fig. 1.10. Comparison of the outcome of the fast aggregation al-
gorithm when processing nodes in decreasing or increasing order

of degree. Icons in the solution set are highlighted in gray.

improve map legibility, which is a fundamental requirement in many map-based ap-
plications, by further reducing the number of icons displayed on the map. To achieve
this goal, we tried two different approaches, producing two variants of the fast aggre-
gation algorithm (similar variants for the maximum aggregation algorithm can also be
produced). The two approaches can also be combined to provide better results.

The first variant is based on processing icons in decreasing (instead of increasing)
order of degree, starting from icons with a higher number of overlaps. In this way, lar-
ger clusters of overlapping icons will be removed early in the process, possibly reduc-
ing the cardinality of the solution set. Fig. 1.10 shows a comparison of the outcome of
the fast aggregation algorithm when processing icons in decreasing or increasing or-
der of degree. In the considered example, when using decreasing order, the first icon
that is processed is 4 (which becomes the aggregator for icons 3-4-5-6), followed by
icon 1 (aggregator for 1 and 2) and icon 7 (aggregator for 7 and 8). When using in-
creasing order, the first icon to be processed is 2 (aggregator for 1 and 2), followed by
icon 5 (aggregator for 4 and 5), icon 8 (aggregator for 7 and 8), icon 3 (individual
icon), and finally icon 6 (individual icon).

The second variant is based on removing all icons within a fixed distance K (in the
conflict graph) from the currently processed icon. For example, for K = 2, both the
neighbors and the neighbors of the neighbors of an icon will be removed from the
map and aggregated. Increasing the parameter K allows to further reduce the number
of visualized icons (until only one icon for each connected component in the conflict
graph will remain) but has also the effect of increasing the maximum Euclidean dis-
tance between an aggregator and its aggregated icons.

Fig. 1.11 shows an example of the outcome of the two proposed variants compared
with the original fast aggregation algorithm.

Fig. 1.11. Impacts of different icon aggregation algorithms on map legibility.

The original icon set is depicted in the upper left image. The other images
show respectively the result of the fast aggregation algorithm (upper right) and

its decreasing degree (lower left) and 2-distance (lower right) variants.

1.3.4 Evaluation

We implemented the algorithms presented in the previous sections using the C# lan-
guage and the .NET Compact Framework for PocketPC devices and run them on a
Dell Axim X30 device (equipped with a 624MHz processor) on different sets of ran-
domly generated icons under the following conditions:

• Screen resolution of 240 by 268 pixels.
• Fixed icon size of 16 by 16 pixels.
• Icon set size: N = 50, 100, 200, 400.

• For each icon set size, 25 different trial configurations with random placement of
icons.

Table 1.1 reports the mean number of icons displayed after aggregation for differ-
ent icon set sizes. The results show that the maximum and fast aggregation algorithms
(whose goal is maximizing the number of displayed icons) are almost equivalent with
50, 100 and 200 icons, while they slightly differ with 400 icons, with the first algo-
rithm performing better than the second. We also included results for a variant of the
maximum aggregation algorithm that allows a minimal overlap (3 pixels) among
icons, thus being able to place more icons for each icon set size.

Algorithm 50 100 200 400
Maximum
(skip list) 0.043 0.177 0.502 1.848
Maximum
(plain list) 0.017 0.040 0.109 0.380
Fast 0.014 0.032 0.077 0.194
Fast (inverse
degree variant) 0.014 0.031 0.077 0.185
Fast (2-distance
variant) 0.011 0.022 0.048 0.142

Table 1.1 Mean computation times (in seconds) to obtain a solution on a Dell Axim X30.

Both variants of the fast aggregation algorithm (whose goal is instead increasing
map visibility) reduce the number of displayed icons compared to the original algo-
rithm with a difference that starts to be meaningful for icon set sizes higher than 100
icons (included). Moreover, the 2-distance variant (K = 2) performs better than the in-
verse degree variant in highly cluttered configurations involving high numbers of
icons.

Algorithm 50 100 200 400
Min-overlap 39.8 66.2 107.3 148.4
Maximum 36.9 58.2 87 116
Fast 36.9 58.2 86.6 111.1
Fast (inverse
degree variant) 34.3 50.5 67.1 86
Fast (2-distance
variant) 34.1 48.8 60.4 67.8

Table 1.2 Mean number of icons displayed after aggregation.

Table 1.2 compares the computation times of the algorithms. We distinguished the
implementation of the maximum aggregation algorithm using the skip list data struc-
ture from the one using the plain list data structure. The results show that the fast ag-
gregation algorithm is faster than the maximum aggregation algorithm (with plain list)
but the difference starts to be meaningful only with a high number of icons. The im-

plementation of the maximum aggregation algorithm using the skip list is instead the
slowest with any number of icons, taking much higher computational time for more
than 200 icons. Of the two variants of the fast aggregation algorithm, the first one is
almost equivalent to the original algorithm while the second one performs slightly
better with each icon set size.

1.4 Future research directions

The aggregation strategy we proposed is based on the design of proper aggregator
icons to indicate clusters of individual overlapping icons. The basic solution we em-
ployed to design such aggregators consists in slightly varying the graphical appear-
ance of individual icons by increasing the thickness of their border. Different ap-
proaches can be explored as well. For example, it is possible to indicate the number of
aggregated icons by (slightly) increasing the size of aggregators. This would help us-
ers to detect areas of a map where higher numbers of icons have been aggregated.

In some map-based applications, icons are not simple placeholders that point out
the presence and location of specific objects in an area but can also be used to convey
information about the features characterizing these objects. For example, icons repre-
senting hotels might visually provide users with information about hotel quality,
range of prices, services or other attributes. It is evident that in this case there is an
even greater need to avoid overlaps among icons so that all useful information can be
easily obtained by users. However, if we apply the aggregation approach as described
in Section 1.3, most of the information concerning aggregated icons would be lost. It
is thus necessary to couple aggregation with additional techniques that can solve this
issue. A trivial, far from optimal, solution would be to provide access to this informa-
tion only through pop-up windows, by simply interacting with aggregators. Other so-
lutions may involve aggregator icons to provide overviews of the attribute values of
aggregated objects. For example, the aggregator may show the maximum of the val-
ues characterizing aggregated objects attributes so that users can understand at a
glance if it is worth interacting with the aggregator to obtain more detailed informa-
tion.

Icons may also refer to entities such as states, districts or parcels, and encode in-
formation about the different parameters characterizing them. Since these areas vary
strongly in both shape and size, the task of positioning icons is not trivial and may re-
quire different approaches compared to the standard icon placement problem. An ex-
ample of such an approach is proposed by Fuchs and Schumann (2004), who combine
a simplified displacement algorithm with a suitable focus+context technique that in-
teractively solves the remaining spatial conflicts.

Another variant of the icon placement problem takes into consideration icons be-
longing to different categories of POIs (e.g., hotels and restaurants). Since applying a
standard aggregation algorithm to each set of icons separately does not guarantee that
there will be no overlaps in the final outcome, proper solutions are needed to address
this issue.

1.5 Conclusions

The requirements for icon placement on maps, although not trivial, have been
scarcely studied by the research community. A number of methods for automatic label
placement have been instead proposed in cartography. Unfortunately, they are fo-
cused on high-quality results, leading to long response times that are not suited for
devices with limited computational resources and for interactive environments. In this
chapter, we presented an approach to the icon placement problem that is based on ag-
gregating overlapping icons, replacing them with special aggregator icons that point
out the presence of aggregated icons and allow the user to retrieve information about
each of them. We designed and evaluated fast algorithms to perform the aggregation
and studied interesting variants of the problem.

It must be pointed out that none of the proposed algorithms can be an optimal solu-
tion to the icon placement problem for all possible map-based applications and their
use scenarios. The most flexible approach, then, would be to choose the best solution
according to users’ needs and to the number of icons to manage. For example, when
only a small number of icons have to be placed on a map, it could be better to relax
the overlap constraint to maximize the amount of icons displayed. On the contrary,
when a high number of icons must be considered, it could be better to adopt more ag-
gressive aggregation algorithms, such as those presented in Section 1.3.4, so that an
adequate portion of map can still be visible. Thus, integrating different algorithms and
selecting the most appropriate one when needed would improve the usefulness of any
mobile map presented to the user.

Acknowledgements

This work has been partially supported by the Italian Ministry of Education, Univer-
sity and Research (MIUR) under the PRIN 2005 Project “Adaptive, Context-aware,
Multimedia Guides on Mobile Devices”.

References

Christensen, J., Marks, J., and Shieber, S. (1995): An empirical study of algorithms for point-
feature label placement. ACM Transactions on Graphics, Vol. 14 No. 3, pp. 203-232.

Chittaro, L. (2006): Visualizing Information on Mobile Devices. IEEE Computer, Vol. 39 No.
3, pp. 40-45.

Cook, A.C., and Jones, C.B. (1990): A Prolog rule-based system for cartographic name place-
ment. Computer Graphics Forum, Vol. 9, pp. 109-126.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (1997): Computational Ge-
ometry Algorithms and Applications. Springer-Verlag, Berlin.

Edelsbrunner, H. (1980): Dynamic Rectangle Intersection Searching. Institute for Information
Processing Report 47, Technical University of Graz, Austria.

Formann, M., and Wagner, F. (1991): A packing problem with applications to lettering of
maps. In Proc. Symposium on Computational Geometry, ACM Press, pp. 281-288.

Fuchs, G., and Schumann, H. (2004): Intelligent Icon Positioning for Interactive Map-based In-
formation Systems. In: Proc. International Conference of the Information Resources Man-
agement Association (IRMA 2004), New Orleans, USA.

Guttman, A. (1984): R-trees: A Dynamic Index Structure for Spatial Searching. In: Proc Con-
ference on Management of Data, University of California, Berkeley, USA, pp 47-57.

Harrie, L., Zhang, Q., and Ringberg, P. (2005): A case study of combined text and icon place-
ment. In Proc. International Cartographic Conference (ICC 2005, CD-ROM), A Coruña,
Spain.

Hirsch, S. A. (1982): An algorithm for automatic name placement around point data. American
Cartographer, Vol. 9 No. 1, pp. 5-17.

Kakoulis, K.G., and Tollis, I.G. (1998): A unified approach to labeling graphical features. In
Proc. Symposium on Computational Geometry, ACM Press, New York, pp. 347-356.

Kirkpatrick, S., Gelatt Jr., C.D., and Vecchi, M.P. (1983): Optimization by simulated anneal-
ing. Science, Vol. 220, pp. 671-680.

Korf, R.E. (1988): Search: A survey of recent results. In: Exploring Artificial Intelligence: Sur-
vey Talks from the National Conferences on Artificial Intelligence, Shrobe, H.E. (Ed).
Morgan Kaufmann, pp. 197-237.

Marks, J., and Shieber, S. (1991): The Computational Complexity of Cartographic Label
Placement, Technical Report TR-05-91, Center for Research in Computing Technology,
Harvard University.

Petzold, I., Gröger, G., and Plümer, L. (2004): Modeling of Conflicts for Screen Map Labeling
In Proc. International Society for Photogrammetry and Remote Sensing Congress (ISPRS
2004, CD-ROM), Istanbul, Turkey.

Pugh, W. (1990): Skip lists: A probabilistic alternative to balanced trees. Communications of
the ACM, Vol. 33 No. 6, pp. 668-676.

Strijk, T., Verweij, B., and Aardal, K. (2000): Algorithms for maximum independent set ap-
plied to map labelling. Technical Report UU-CS-2000-22, Department of Computer Sci-
ence, Utrecht University.

Verner, O.V., Wainwright, R.L., and Schoenefeld, D.A. (1997): Placing text labels on maps
and diagrams using genetic algorithms with masking. INFORMS Journal on Computing,
Vol. 9 No. 3, pp. 266-275.

Wagner, F., Wolff, A., Kapoor, V., and Strijk, T. (2001): Three Rules Suffice for Good Label
Placement. Algorithmica, Vol. 30 No. 2, pp. 334-349.

Wolff, A. (2006): Map-Labeling Bibliography. http://i11www.iti.uni-karlsruhe.de/~awolff/
map-labeling/bibliography/

Wong, P.C., and Bergeron, R.D. (1997): 30 Years of Multidimensional Multivariate Visualiza-
tion. In Scientific Visualization, Nielson, G.M., Hagen, H., and Muller, H., (Eds). IEEE
Computer Society Press, pp. 3-33.

Yamamoto, M., Camara, G., and Lorena, L.A.N. (2002): Tabu search heuristic for point-feature
cartographic label placement. GeoInformatica, Vol. 6 No. 1, pp. 77-90.

Yamamoto, M., Camara, G., and Lorena, L.A.N. (2005): Fast point-feature label placement for
real time screen maps. In Proc. Symposium on GeoInformatics (GEOINFO 2005), Campos
do Jordão, Brazil.

Yoeli, P. (1972): The logic of automated map lettering. The Cartographic Journal, Vol. 9 No.
2, pp. 99-108.

Zoraster, S. (1990): The solution of large 0-1 integer programming problems encountered in
automated cartography. Operations Research, Vol. 38 No. 5, pp. 752-759.

http://wwwicg.informatik.uni-rostock.de/%7Eschumann/papers/2004+/Fuchs_Schumann_IRMA2004.pdf
http://wwwicg.informatik.uni-rostock.de/%7Eschumann/papers/2004+/Fuchs_Schumann_IRMA2004.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

