Virtual Camera Composition
with Particle Swarm Optimization

Paolo Burellt, Luca Di Gasper Andrea Ermetici, and Roberto Randn

L HCI Lab, University of Udine, via delle Scienze 206, 3310@jté, Italy
roberto.ranon@i m . uniud. it
2 DIEGM, University of Udine, via delle Scienze 208, 33100, Italy
| . di gaspero@ni ud. it

Abstract. The Virtual Camera Composition (VCC) problem consists itoau
matically positioning a camera in a virtual world, such ttia resulting image
satisfies a set of visual cinematographic properties [3hipaper, we propose
an approach to VCC based &article Svarm Optimization [5]. We show, in re-
alistic situations, that our approach outperforms a diszad, exhaustive search
method similar to a proposal by Bares et al [1].

1 Introduction

In 3D graphics interactive applications, effective canm@ezement and control is fun-
damental for the user to understand the virtual environraedtbe able to effectively
accomplish the intended task. For example, in 3D infornmefigualization, bad cam-
era placements could cause the user to miss important vstsils (e.g., because they
are occluded) and thus make wrong assumptions on the data analysis.

In most current 3D applications, users directly positiond¢mera using a input de-
vice through a tedious and time-consuming process reguarsuccession of “place the
camera” and “check the result” operations [3]. In recentyesome researchers (e.g.,
[1, 3, 6, 8]) have come up with methods to automatically pmsithe camera that aim at
relieving the user from direct control, and are inspired bylmuman cinematographers
approach the same problem: first, requirements on the imegfebto be obtained are
stated (e.qg., by the user), and then, a camera fulfillingetheguirements is computed.

More specifically, the Virtual Camera Composition (VCC) Iplem consists in posi-
tioning a camera in a virtual world, such that the resultmgge satisfies a set of visual
cinematographic properties [3], e.g. subjects’ size andtlon. The approaches devel-
oped so far typically model VCC as a constraint satisfactiooptimization problem
(some approaches use both) where the desired image pespE®irepresented as con-
straints or objective functions. A range of different salyitechniques [4] have been
explored in the past, but generating effective results ai-tieme (or near-real time),
even with static scenes, remains an issue. Since this egqeirt is very important in
interactive applications, there is the need of finding mdfieient methods, as well as
to compare the performances of previously proposed apbesdn realistic contexts.

In this paper, we present and evaluate an approach to VCCGethploysParti-
cle Svarm Optimization (hereinafter, PSO) [5], a method which, to the best of our

knowledge, has never been applied to this kind of problei®€ B a population-based
method for global optimization, which is inspired by the isbbehavior that underlies
the movements of a swarm of insects or a flock of birds. We Wwikshow the PSO ap-
proach can be used to solve VCC problems in the case of staties, and evaluate its
performances against a discretized, exhaustive searchagdpvery similar to the one
proposed by Bares et al in [1]. Finally, one of our motivasidor this research is to use
automatic cameras to support users’ navigation in virtnglrenments. Although this
is not the focus of this paper, we will briefly present the ideaur experimentation.

The paper is organized as follows. Section 2 reviews relata#t, while Section 3
describes our approach to VCC. Section 4 presents the exgatal results. Finally, in
Section 5 we conclude the paper and outline future work.

2 Related Work

A comprehensive survey of approaches to camera control edaund in [4]. In the
following, we focus on approaches to VCC that: (i) employ alaeative “cinemato-
graphic” style, i.e. where the problem is expressed as afsetjairements on the im-
age computed from the camera, such as relative viewing aaglg occlusions, and (ii)
model the problem as a constraint and/or optimization aystdnese approaches are by
far the most general, and therefore interesting for a widgeaf applications.

In constrained search and/or optimization approaches t€,\Me properties of
the image computed from the camera are expressed as nuhuencdraints on the
camera parameters, (typically, camera position, origmtagnd FOV). Although pure
optimization (e.g., [6]) or constraint satisfaction (e[@]) have been used in the past,
more recent proposals tend to adopt an hybrid strategy,edm@mne requirements are
modeled as constraints, and used in a first phase to compataegéc volumes of
feasible camera positions [1, 3, 8]. Then, in a second phegairements are modeled
as objective functions that are maximized by searchinglefie geometric volumes
using various optimization methods, such as stochast®] [&; heuristic [1] search.

The advantage of the hybrid approach is that it can reducelexity by limiting
the search space using geometric operators to implemestraonts in the first phase,
and, at the same time, the optimization phase can increashémces (with respectto a
pure constraint-based approach) that a (possibly goodbisonlwill be found: in many
situations, it is better to have a solution, although noisBahg some requirements,
than having no solution at all. Another advantage is thetfeattthe geometric volumes
generated in the first phase can be semantically charasdesiith respect to their visual
properties [3], e.g. to allow the computation of multipletgntially equivalent solutions
instead of just generating a single one.

3 APSO Approach to VCC

In this Section, we describe how PSO can be used to solve ti@préblem. First, we
will present the language that can be used to describe tipepies of the image to be
generated from the camera. Our language comprises mog oisthal properties from
prior work including [1, 3], so, for reasons of space, we rdffie reader to those papers

for a more detailed explanation. Then, we will describe thigisg process. As other
approaches mentioned in the previous section, we followtaithstrategy. Therefore,
we first compute volumes of feasible camera positions fromesof the requirements
that constrain the position of the camera. This phase ofdlvéng process is quite sim-
ilar to [3] (our proposal can thus be considered a variaticdhat approach), so we will
just give an high-level overview. The search inside theifdasegions is then carried
out with PSO, on which we will focus in detail. As in all othgo@oaches to VCC,
we consider a classical pinhole Euler-based camera modebithe parameters are the
camera position, orientation, and FOV. Finally, the viqualperties we adopt (as well
as the solving method) are not meant for dynamic scenes aiitipdrary occlusions,
which requires properties expressed over more than justuirent point in time.

3.1 Available Image Properties

The following is the list of properties that involve an olijecthe scene. Most properties
include a real argument;, whose value encodes the importance of the requirement.

— Object view angle Requires the camera to lie at a specified orientation velati
to an objectiobj H Angle(Object x, angle 6, angle , double w), wheref is the
angle between the object front vector and the preferredingpdirection, andy de-
fines arange of allowed angles around the preferred dirgetigpl” Angle(Object z,
angle 6, angle v, double w), whered is the angle between the object up vector and
the preferred viewing direction, white defines a range of allowed angles around
the preferred direction;

— Objectinclusion in the image Requires a specified fractighe [0, 1] of the object
to lay inside the FOV of the camerabj InF OV (Object x, double f, double w)

(f = 0 means the object must not be in the camera FOV);

— Obiject projection Size Requires the projection of the object to cover a specified
fraction f €]0, 1] of the imageobj ProjSize(Objectz, double f, double w);

— Object distance from camera Requires the object to lie at a specified distance
from the cameraubj Distance FromCam/(Object z, double d,,,;,,, double d,,q.);

— Object Position in Frame Requires a specified fractighe [0, 1] of the object to
lie inside a given rectangular subregion of the imaggProj Position(Object x,
2DPoint p;, 2DPoint po, double f, double w), wherep,, p, are two points in the
image identifying the top-left and bottom-right cornerdtef rectangular region (0
means the object must not be inside the rectangle);

— Object Occlusion Requires the specified fractighe [0, 1] of the object projec-
tion to be occluded in the imageb;jOcclusion(Object x, double f, double w) (0
means the object should be not occluded at all).

Additionally, a set of camera-related properties are ddfifidey are useful to di-
rectly limit the search space when suitable; for examplejdgagdown cameras and
cameras placed inside walls or other objects are typicalbpitable.

— Camera outside region Requires the camera to lie outside a box-shaped region
in 3D spacecamOutsideRegion(3DPaint p1, 3DPoint ps), wherep,, p, are two
opposite corners of the box.

— Camera outside object Requires the camera to lie outside the bounding box of a
specified objecttamOutsideObj(Object).

— Camera above planeRequires the camerato lie above a given plane in 3D space:
camAbove Plane(3DPoint o, 3DPoint n), whereo is a point on the plane andis
the normal of the plane.

— Bind camera parameters:camBind X (double z,,;,, double x,,4..),
camBindY (double y,,,,, double y,,4.), camBindZ (double z,,;,, double z,,,.)
camBindRoll(angle a,in, angle amqz,), camBindY aw(angle a,in, angle amaz,),
camBindPitch(angle am,in, angle amaq,), camBind FOV (angle anin, angle amaz,),
camAspect Ratio(double f).

All these atomic properties can be combined to form more derqgescriptions by
using the logic operatox.

3.2 Phase 1: Computing Volumes of Feasible Camera Positions

In this phase we use some of the specified properties as geowm@trators to derive
(possibly non connected) volumes in 3D space where it islisa® position the cam-
era. More particularly, the properties which are considémehis phase are:

— object-related propertie®bject View Angle, Distance from Camerg
— camera-related properti€gSamera outside region Camera outside objectCam-
era above planeandBind camera parameters

For example, @istance from cameraproperty defines a feasible volume which
is the difference of two spheres, whose center is the ceffitdreobounding volume
of the considered object, and whose radii are respectitielyrtaximum and minimum
allowable distances. The geometric operations for thergihgperties are defined in
detail in [1, 3]. Note that, contrary to [3], we do not emplactusion-related properties
in this step because we prefer to avoid cutting too much thechespace (with the risk
of not generating any solution). The feasible volumes ddfineeach property are then
combined with intersection operators to derive the (pdgsibn-connected) feasible
volume into which the search with PSO will be carried out.

Technically, this phase has been implemented using/ife library (www. vt k.
or g) that provides the required geometric primitives (platheses, ...) and operators
(intersection, difference, ...) to derive the feasiblewoés of space as implicit func-
tions. The optimization phase will then use the computediaitfunctions to evaluate
when a point lies inside or outside the feasible volume.

3.3 Phase 2: Searching inside the Feasible Volume with PSO

Swarm Intelligence is an Artificial Intelligence paradigmhich relies on the exploita-
tion of the (simulated) behavior of self-organizing agdotsackling complex control

and optimization problems. In particular, PSO [5] is a pagioh-based method for
global optimization, whose dynamics is inspired by the aldoehavior that underlies
the movements of a swarm of insects or a flock of birds. Thesements are directed

toward both the best solution to the optimization probleomiby each individual and
the global best solution.

More formally, given aD-dimensional (compact) search spate R” and a scalar
objective functionf : S — R that assesses the quality of each paint S and has
to be maximized, awarmis made up of a set aV particles, which are located in that
space. The-th particle is described by thrde-dimensional vectors, namely:

— the particle curremposition x; = (4, , iy, - - -, Tip);

— the particlevelocity v; = (v;,, v, - .., vip), i.€., the way the particle moves in the
search space;

— the particlebest visited position (as measured by the objective functiphP,; =
(piy, Pisy - - -, Pip)» @ Mmemory of the best positions ever visited during the $earc

The index of the particle that reached the global best dgitesition is denoted by,
thatis,g = argmax;—1 .~ F(P;).

At the beginning of the search (step= 0), the particles are set at random locations
and with random velocities. The search is performed as aatiite process, which at
stepn modifies the velocity and position vectors of each particiettee basis of the
values at step — 1. The process evolves according to the following rules (sgrits
denote the iteration number):

PR ey (PP —xPT) eora (PR %P (1)

=x"l 4D i=1,2,....,N (2)

K3

Vi =w
n
K3

In these equations, the valugsandr, are two uniformly distributed random num-
bers in thg0, 1] range, whose purpose is to maintain population diversiipstants:;
andc, are respectively the so-calledgnitive andsocial parameters, which are related
to the speed of convergence. The valufe is aninertia weight and it establishes the
influence of the search history on the current move. A higlyiigs related to a global
exploration, while a low weight allows a local explorati@gp called exploitation). In
Section 4, we will discuss the values we have chosen for alpdrameters (including
the number of particles and iterations).

Since at each iteration a solution to the problem is avasléhlthough it could not
be the optimal one), PSO belongs to the familyaaftime algorithms, which can be
interrupted at any moment still providing a solution. In tteneral case, however, the
iterative process is run until either a pre-specified maximnumber of iterations has
elapsed or the method has converged (i.e., all velociteglanost zero).

Having overviewed how PSO works, we now describe how we use gearching
inside the feasible volumes computed in the previous pliaselr case, the PSO search
space is composed by all camera parameters, so it is a sitiR&tlo particular, each
particle position irR” completely defines a camera, i.e. it assigns a value to eable of
7 camera parameters (3 position coordinates, 3 orientatigtes, and FOV angle):

— the first three dimensions:{, x1, 22) correspond to the camera position. These
values will be kept inside the feasible volume during theroation process;

— the second three dimensionsg (x4, x5) correspond to the camera orientation, each
ranging from O t@;

— the last dimensionu(;) corresponds to the camera FOV, ranging from a minimum
to a maximum value;

In other words, PSO will optimize all camera parameters, Wit respect to the camera
position (first three dimensions of the search space), Bedtlche restricted inside the
feasible volume computed in the previous phase. In pradiiceheck if a particle is
inside or outside the feasible volume, we simply ugex,, andzs as arguments to the
implicit functions derived in phase 1.

At the beginning of the searclV particles are set at random locations inside the
feasible volumes (i.e., we randomly generate particleswatobtain N of them inside
the feasible volume). Since particles might exit the feasiblume during the execution
of PSO, after each iteration we check each particle witheetsp the implicit functions
(i.e., we check the position of the camera defined by thegeytand, if the particle is
notin the feasible volume, we assign it the worst possibligevaf the objective function
(i.e., 0). This will make the particle return into the fedsitzolume in the next iterations.

The objective function is built by taking into account thdidwing object-related
propertiesObject view angle Object inclusion in the image Object projection Size,
Object Position in Frame, andObject Occlusion The degree of satisfaction of each
property is evaluated by means of a functipn IT x S — [0,1] whose semantics
depends on the property € IT at hand. In general, the function measures a relative
difference between the desired value for the property anadtual value. The value of
f is then normalized in order to obtain a real value in the rdfgs, where 1 repre-
sents the satisfaction of the associated constraint and@niglete unfulfilment. For
example, to evaluate an Object Position in Frame Propegyaiculate the projection
of the object bounding sphere, and then determine how mugptbjection covers the
specified rectangular region. In the case of an occlusiopesty, we calculate the value
of f by ray casting from the camera to the bounding box of the ¢je® to the center
of the bounding box, and 8 to its corners), and testing ietgigns of the rays with
other objects in the scene (where the number of rays intiémgemther objects gives the
percentage of occlusion). This is not optimal, since it rigé problematic for large
occluders and not very precise with respect to the expneséipartial occlusion. How-
ever, how the satisfaction of each property is calculatéddspendent from PSO, and
can thus be improved maintaining the general solving podes the other properties,
the calculation of the objective function is similar to thees described in [1, 3, 4].

When atomic properties are combined hyconnectors, the combined objective
function is computed ag(m A w2, x) = w1 f (71, %) + wa f (72, x), where the weights
w; are those given as last argument to each property.

In general, the evaluation of a particle requires the fuimcti to be computed for
all the properties of the image description. However, thigcpss can be quite time
consuming, especially in the case of complex image desmnipbor with properties that
require a computationally intensive evaluation (e.g.lusion). Therefore, we adopt
alazy evaluation mechanism for the objective function: the cotafion of f for the
particles is stopped if the sum of the weights of the properties théitlsive to be
evaluated is smaller than the best objective vai(e P;). Therefore, as a heuristic, it

could be useful to sort the properties leaving at the endties vhose evaluation has a
higher computational cost.

4 Implementation and experimental results

The VCC approach described in the previous section has beglermented as a part
of a general C++ library which can be used in 3D applicatidie library includes,
besides the PSO solver, a discretized, exhaustive seasgdlalgorithm (hereinafter
called EXH) which follows the approach described in [1]. Thist phase is identical
for PSO and EXH. In the second phase, EXH scans a gridofm x o points in the
3D scene (where, m ando can be varied depending on the desired resolution). For
each point in the grid, when it is inside the feasible voluE¥H considers a finite
set of camera orientations (with differ by 15 degrees in dagler angle) and FOV
values, and for each one it evaluates the objective funeti@etly as PSO (including
lazy evaluation). After having considered all points, orentihe value of the objective
function is sufficiently close to the optimum, EXH returns thest found camera.

In our experimentation, we will consider three increasirgimplex VCC problems
and show the resulting cameras generated by PSO and EXH. Ke tha test more
realistic, we have set all the problems in the 3D model of aiewvad village (which
can be visited atidi ne3d. uni ud. i t/ venzone/ en/ i ndex. ht m), so that in
evaluating occlusions the algorithms will have to take etoount several objects.

All the VCC problems have been solved 100 times each with algghrithms. Since
the PSO approach can produce different cameras in diffemestof the same problem,
we will show more cameras for each problem solved by PSO, astdjpe camera for
EXH (which calculates the same camera in each run). Then, iWdigcuss the com-
putational performances. For PSO, we have employed in eatigom a population of
64 particles and limited the maximum number of iterationSQoThese parameter val-
ues have been determined through experimentation, anddeavenstrated to be fairly
robust in all tests we have made. For the other parameterS©Of Re have employed
¢1 = ¢o = 0.5 and an inertia weight which linearly decreases from an initial value of
1.2 to 0.2, in order to balance between exploration and é&spion at different stages
of the search. These values are considered a good choiceny pnablems to which
PSO has been applied.

For EXH, we have employed in each test the smallest grid (mgeof number of
points) such that the algorithm was able to generate a cawithrditness value close
the one PSO was able to compute. Moreover, both approache$®¥ban set to stop the
search when they reach the threshold of 98% of optimal v&oéh algorithms have
been compiled with Microsoft Visual Studio 2005 C++ compaded run on an Athlon
64 X2 5000+ (2.4 GHz), 4 GB ram running Microsoft Windows XP.

In each of the following tests, we have introduced a set gberties to limit camera
orientation and FOV to suitable values. More specificallg,lack the up vector of the
camera parallel to the world Y axis and the FOV to the valueenily being used by
the rendering engine, and limit the camera position insibexacontaining the whole
scene. The common properties used in the tests presentkis ipaiper are listed the
following (in all listings we omit then connectors).

(d)

Fig. 1: Cameras computed from the properties listed in BPcémera computed by EXH con-
sidering a25 x 25 x 25 grid of possible camera positions; (b,c,d) cameras condpaePSO in
three different runs.

Listing 1.1: Properties common to all problems

canBi ndRol | (0, 0)

camAspect Rati o(current ScreenAspect Ratio)
canBi ndFOV(current Caner aFOV)

canBi ndX(x_{mn}, x_{nmax})

canBi ndY(y_{mn}, y_{mx})

canBi ndzZ(z_{mn}, z_{nmax})

Over the shoulder shot. The objective of this problem is to obtain a typicakr the
shoulder shot that shows the spatial relationship between two chersaim the scene.
The resulting cameras are shown in Figure 1.

Listing 1.2: Over the shoulder

camut si deObj ect (bl ueWarri or)

obj Cccl usi on(bl ueWarrior, 0.0, 1.0)
obj I nFOV(bl ueVrrior, 1.0, 1.0)
camOut si deQbj (redWarri or)

obj Cccl usi on(redWarior, 0.0, 1.0)
obj | nFOV(redWarrior, 1.0, 1.0)

obj HAngl e(redWarrior, -180, 90, 1.0)
obj Proj Si ze(redWarrior, 0.3, 1.0)
obj VAngl e(redWarrior, 45, 15, 1.0)

Occlusion. The objective of this problem is to obtain an image where dnthree
characters in the scene (whose relative positions are sholkigure 2a) is completely

Fig.2: Cameras computed from the properties listed in aBaf image showing the relative
position of three warriors in the scene; (b) camera comphoyeleXH considering d0 x 10 x 10
grid of possible camera positions; (c,d,e,f) cameras coetboly PSO in four different runs.

occluded, while the others are completely visible. The ltegnimages are shown in
Figure 2. Note that, in this case, the cameras produced by(Pig0res 2c and 2d) in
different runs are quite different.

Listing 1.3: Occlusion

camut si deObj ect (bl ueWarri or)

obj Cccl usi on(bl ueWarrior, 0.0, 1.0)
obj I nFOV(bl uewari or, 1.0, 1. 0)
camOut si deQbj ect (redWarri or)

obj Cccl usi on(redWarior, 0.0, 1.0)
obj | nFOV(redWarrior, 1.0, 1.0)

obj Cccl usi on(bl ackWarrior, 1.0, 1.0)

Navigation aid. One interesting possibility is to use automatically getetaameras
to help users in orienting themselves and in reaching platégerest in virtual en-
vironments. For example, by augmenting the scene with seécniaformation about
landmarks, points of interest, and paths, one could demsvesdc rules that compute
(and present to the user during navigation) cameras thhtigiig the most important
or closer navigational elements. This could help usersixdeérn landmarks during
exploration and therefore increase the acquisition ofgatidonal knowledge; (ii) see
and recognize landmarks during orientation and search.I®yiacluding the user’s
avatar in the computed image, it is also possible to highligé current spatial rela-
tion between the user’s actual position and the navigatieleanents in the scene. The
following problem regards a situation where we have somdraarks (the cathedral
dome, its tower, the town hall tower and the baptistery) ardwould like to compute

cameras that shows the avatar at a certain size (most inmpoeguirement, otherwise
the user could not be able to find its position), plus mostiptstandmarks. The results
obtained with different position of the user’s avatar (Whis the green character in the
images) are reported in figure 3. Note that requests canrfatlpesatisfied in any run,
but nevertheless the computed cameras are at least ablghight the user’s position
with respect to some of the landmarks.

Listing 1.4: Navigation Aid

obj Proj Si ze(avatar, 0.1, 5.0)

obj Cccl usi on(avatar, 0.0, 10.0)

obj I nFOV(avat ar, 1. 0, 12. 5)

obj Cccl usi on(baptistery, 0.0, 1.0)

obj I nFOV(baptistery, 1.0, 1.0)

obj Cccl usi on(town_hal | _tower, 0.0, 1.0)
obj I nFOV(t own_hal | _tower, 1.0, 1. 0)

obj Cccl usi on(cat hedral _done, 0.0, 1.0)
obj I nFOV(cat hedr al _done, 1.0, 1. 0)

obj Cccl usi on(church_tower, 0.0, 1.0)
obj I nFOV(church_t ower, 1.0, 1. 0)

4.1 Performances

For each run, we have recorded the execution time (whichded both phases) and the
quality of the generated camera, i.e. the best value of thesktfunction. As it is shown
intable 1, PSO is consistently faster than EXH, even whegtigdaesolution employed
by EXH is ad-hoc set to minimize the number of consideredigairile still producing
images with quality close to PSO. On the contrary, PSO paemé&ave not been
changed across the problems. However, theoretically oot abtain better results
by tuning the the size of the swarm depending on the numberagfepties defined.
Note also that this result was not straightforward beformgldhe tests, since EXH
works on a discretization of the search space, while PSOsiark continuous search
space. With respect to the quality of the generated camieréise first two problems
PSO obtains values of the fithess function close to the optiifeug. 4.87 out of 5 in the
first problem), while in the last problem it is impossible tdly satisfy all requirements
and therefore the degree of satisfaction is lower (28.72687.5).

As one can see from the table, one of the issues with PSO istieee in the time
needed. However, if there is the need of guaranteeing asoltthin a certain amount
of time, the algorithms has the nice property of being stbppanytime and return a
(possibly non optimal) solution.

time (ms) quality
PSO EXH PSO EXH
Problem min max average std. d¢averag best value std. de1\,best value

occlusion (1.3) 58 737 443 36.95% 921 | 4.78/5.0 2.51% 4.80/5.0
navigation aid (1.4)|1762 3348 2235 16.63%8993 |28.73/37.5 6.41%28.23/37.5
Table 1: Performance data collected in 100 runs for PSO artd EX

over the shoulder (1.2)33 319 151 36.24016 541

4.87/5.0 5.13‘3 4.84/5.0

0 (k)

Fig. 3: Cameras computed from the properties listed in lathEow shows images computed
with the user’s avatar in different positions. For each rig, left image has been computed by
EXH considering a5 x 15 x 15 grid of possible camera positions; the center and right @sag
have been computed by PSO.

From the results obtained, another evidence is that exattitnes generally depend
on the number and nature of the properties that are evaluétfefitness functions, with
occlusions, as noted in the literature, being the mostyesdluation.

5 Conclusions

We have presented a PSO approach for the VCC problem. Thesedmethod works
with static scenes and performs significantly better thaexdraustive search on a dis-
cretization of the space. Nevertheless, additional erpents on other scenes and image
descriptions should be carried out to evaluate the methad thoroughly. With respect
to this point, one goal for future work that could benefit thére research areais to de-
fine a benchmark comprising a set of representative andtieacenes and problems,
thus allowing the experimental comparison of proposed oulin the literature.

Acknowledgments. The authors acknowledge the financial support of the Itallan
istry of Education, University and Research (MIUR) withiretFIRB project number
RBIN0O4M8SS8.

References

[1] W. Bares, S. McDermott, C. Boudreaux, and S. Thainimittual 3d camera com-
position from frame constraints. roceedings of the eighth ACM international
conference on Multimedia, pages 177-186. ACM, New York, NY, USA, 2000.

[2] W. H. Bares, J. P. Gregoire, and J. C. Lester. Realtimastraimt-based cinematog-
raphy for complex interactive 3d worlds. ARAAI/IAAI, pages 1101-1106. 1998.

[3] M. Christie and J.-M. Normand. A semantic space panitig approach to virtual
camera control. IrProceedings of the Annual Eurographics Conference, pages
247-256. 2005.

[4] M. Christie and P. Olivier. Automatic camera control mngputer graphics. IRro-
ceedings of the Annual Eurographics conference - State of the Art Reports, pages
89-113. 2006.

[5] R. C. Eberhart and J. Kennedy. Particle swarm optimizatin Proceedings of the
|EEE International Conference on Neural Networks 1995, volume 4, pages 1942—
1948. 1995.

[6] N. Halper and P. Oliver. CamPlan: A camera planning agémiSmart Graphics
2000 AAAI Spring Symposium, pages 92—100. 2000.

[7] J. Kennedy, R. C. Eberhart, and Y. SHawvarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 2001. ISBN 978-1-55685-4.

[8] J. H. Pickering.Intelligent Camera Planning for Computer Graphics. PhD thesis,
Department of Computer Science, University of York, 2002.

