
Virtual Camera Composition
with Particle Swarm Optimization

Paolo Burelli1, Luca Di Gaspero2, Andrea Ermetici1, and Roberto Ranon1

1 HCI Lab, University of Udine, via delle Scienze 206, 33100, Udine, Italy
roberto.ranon@dimi.uniud.it

2 DIEGM, University of Udine, via delle Scienze 208, 33100, Udine, Italy
l.digaspero@uniud.it

Abstract. The Virtual Camera Composition (VCC) problem consists in auto-
matically positioning a camera in a virtual world, such thatthe resulting image
satisfies a set of visual cinematographic properties [3]. Inthis paper, we propose
an approach to VCC based onParticle Swarm Optimization [5]. We show, in re-
alistic situations, that our approach outperforms a discretized, exhaustive search
method similar to a proposal by Bares et al [1].

1 Introduction

In 3D graphics interactive applications, effective cameraplacement and control is fun-
damental for the user to understand the virtual environmentand be able to effectively
accomplish the intended task. For example, in 3D information visualization, bad cam-
era placements could cause the user to miss important visualdetails (e.g., because they
are occluded) and thus make wrong assumptions on the data under analysis.

In most current 3D applications, users directly position the camera using a input de-
vice through a tedious and time-consuming process requiring a succession of “place the
camera” and “check the result” operations [3]. In recent years, some researchers (e.g.,
[1, 3, 6, 8]) have come up with methods to automatically position the camera that aim at
relieving the user from direct control, and are inspired by how human cinematographers
approach the same problem: first, requirements on the image or shot to be obtained are
stated (e.g., by the user), and then, a camera fulfilling those requirements is computed.

More specifically, the Virtual Camera Composition (VCC) problem consists in posi-
tioning a camera in a virtual world, such that the resulting image satisfies a set of visual
cinematographic properties [3], e.g. subjects’ size and location. The approaches devel-
oped so far typically model VCC as a constraint satisfactionor optimization problem
(some approaches use both) where the desired image properties are represented as con-
straints or objective functions. A range of different solving techniques [4] have been
explored in the past, but generating effective results in real-time (or near-real time),
even with static scenes, remains an issue. Since this requirement is very important in
interactive applications, there is the need of finding more efficient methods, as well as
to compare the performances of previously proposed approaches in realistic contexts.

In this paper, we present and evaluate an approach to VCC thatemploysParti-
cle Swarm Optimization (hereinafter, PSO) [5], a method which, to the best of our

knowledge, has never been applied to this kind of problems. PSO is a population-based
method for global optimization, which is inspired by the social behavior that underlies
the movements of a swarm of insects or a flock of birds. We will show how the PSO ap-
proach can be used to solve VCC problems in the case of static scenes, and evaluate its
performances against a discretized, exhaustive search approach very similar to the one
proposed by Bares et al in [1]. Finally, one of our motivations for this research is to use
automatic cameras to support users’ navigation in virtual environments. Although this
is not the focus of this paper, we will briefly present the ideain our experimentation.

The paper is organized as follows. Section 2 reviews relatedwork, while Section 3
describes our approach to VCC. Section 4 presents the experimental results. Finally, in
Section 5 we conclude the paper and outline future work.

2 Related Work

A comprehensive survey of approaches to camera control can be found in [4]. In the
following, we focus on approaches to VCC that: (i) employ a declarative “cinemato-
graphic” style, i.e. where the problem is expressed as a set of requirements on the im-
age computed from the camera, such as relative viewing angles and occlusions, and (ii)
model the problem as a constraint and/or optimization system. These approaches are by
far the most general, and therefore interesting for a wide range of applications.

In constrained search and/or optimization approaches to VCC, the properties of
the image computed from the camera are expressed as numerical constraints on the
camera parameters, (typically, camera position, orientation, and FOV). Although pure
optimization (e.g., [6]) or constraint satisfaction (e.g., [2]) have been used in the past,
more recent proposals tend to adopt an hybrid strategy, where some requirements are
modeled as constraints, and used in a first phase to compute geometric volumes of
feasible camera positions [1, 3, 8]. Then, in a second phase,requirements are modeled
as objective functions that are maximized by searching inside the geometric volumes
using various optimization methods, such as stochastic [3,8] or heuristic [1] search.

The advantage of the hybrid approach is that it can reduce complexity by limiting
the search space using geometric operators to implement constraints in the first phase,
and, at the same time, the optimization phase can increase the chances (with respect to a
pure constraint-based approach) that a (possibly good) solution will be found: in many
situations, it is better to have a solution, although not satisfying some requirements,
than having no solution at all. Another advantage is the factthat the geometric volumes
generated in the first phase can be semantically characterized with respect to their visual
properties [3], e.g. to allow the computation of multiple, potentially equivalent solutions
instead of just generating a single one.

3 A PSO Approach to VCC

In this Section, we describe how PSO can be used to solve the VCC problem. First, we
will present the language that can be used to describe the properties of the image to be
generated from the camera. Our language comprises most of the visual properties from
prior work including [1, 3], so, for reasons of space, we refer the reader to those papers

for a more detailed explanation. Then, we will describe the solving process. As other
approaches mentioned in the previous section, we follow a hybrid strategy. Therefore,
we first compute volumes of feasible camera positions from some of the requirements
that constrain the position of the camera. This phase of the solving process is quite sim-
ilar to [3] (our proposal can thus be considered a variation of that approach), so we will
just give an high-level overview. The search inside the feasible regions is then carried
out with PSO, on which we will focus in detail. As in all other approaches to VCC,
we consider a classical pinhole Euler-based camera model where the parameters are the
camera position, orientation, and FOV. Finally, the visualproperties we adopt (as well
as the solving method) are not meant for dynamic scenes with temporary occlusions,
which requires properties expressed over more than just thecurrent point in time.

3.1 Available Image Properties

The following is the list of properties that involve an object in the scene. Most properties
include a real argument,w, whose value encodes the importance of the requirement.

– Object view angle. Requires the camera to lie at a specified orientation relative
to an object:objHAngle(Object x, angle θ, angle γ, double w), whereθ is the
angle between the object front vector and the preferred viewing direction, andγ de-
fines a range of allowed angles around the preferred direction;objV Angle(Object x,
angle θ, angle γ, double w), whereθ is the angle between the object up vector and
the preferred viewing direction, whileγ defines a range of allowed angles around
the preferred direction;

– Object inclusion in the image. Requires a specified fractionf ∈ [0, 1] of the object
to lay inside the FOV of the camera:objInFOV (Object x, double f, double w)
(f = 0 means the object must not be in the camera FOV);

– Object projection Size. Requires the projection of the object to cover a specified
fractionf ∈]0, 1] of the image:objProjSize(Object x, double f, double w);

– Object distance from camera. Requires the object to lie at a specified distance
from the camera:objDistanceFromCam(Object x, double dmin, double dmax);

– Object Position in Frame. Requires a specified fractionf ∈ [0, 1] of the object to
lie inside a given rectangular subregion of the image:objProjPosition(Object x,
2DPoint p1, 2DPoint p2, double f , double w), wherep1, p2 are two points in the
image identifying the top-left and bottom-right corners ofthe rectangular region (0
means the object must not be inside the rectangle);

– Object Occlusion. Requires the specified fractionf ∈ [0, 1] of the object projec-
tion to be occluded in the image:objOcclusion(Objectx, double f, double w) (0
means the object should be not occluded at all).

Additionally, a set of camera-related properties are defined. They are useful to di-
rectly limit the search space when suitable; for example, upside-down cameras and
cameras placed inside walls or other objects are typically unsuitable.

– Camera outside region. Requires the camera to lie outside a box-shaped region
in 3D space:camOutsideRegion(3DPoint p1, 3DPoint p2), wherep1, p2 are two
opposite corners of the box.

– Camera outside object. Requires the camera to lie outside the bounding box of a
specified object:camOutsideObj(Object x).

– Camera above plane. Requires the camera to lie above a given plane in 3D space:
camAboveP lane(3DPoint o, 3DPoint n), whereo is a point on the plane andn is
the normal of the plane.

– Bind camera parameters:camBindX(double xmin, double xmax),
camBindY (double ymin, double ymax), camBindZ(double zmin, double zmax)
camBindRoll(angle αmin, angle αmax,), camBindY aw(angle αmin, angle αmax,),
camBindP itch(angle αmin, angle αmax,), camBindFOV (angle αmin, angle αmax,),
camAspectRatio(double f).

All these atomic properties can be combined to form more complex descriptions by
using the logic operator∧.

3.2 Phase 1: Computing Volumes of Feasible Camera Positions

In this phase we use some of the specified properties as geometric operators to derive
(possibly non connected) volumes in 3D space where it is feasible to position the cam-
era. More particularly, the properties which are considered in this phase are:

– object-related properties:Object View Angle, Distance from Camera;
– camera-related properties:Camera outside region, Camera outside object, Cam-

era above planeandBind camera parameters.

For example, aDistance from cameraproperty defines a feasible volume which
is the difference of two spheres, whose center is the center of the bounding volume
of the considered object, and whose radii are respectively the maximum and minimum
allowable distances. The geometric operations for the other properties are defined in
detail in [1, 3]. Note that, contrary to [3], we do not employ occlusion-related properties
in this step because we prefer to avoid cutting too much the search space (with the risk
of not generating any solution). The feasible volumes defined by each property are then
combined with intersection operators to derive the (possibly non-connected) feasible
volume into which the search with PSO will be carried out.

Technically, this phase has been implemented using theVTK library (www.vtk.
org) that provides the required geometric primitives (planes,boxes, . . .) and operators
(intersection, difference, . . .) to derive the feasible volumes of space as implicit func-
tions. The optimization phase will then use the computed implicit functions to evaluate
when a point lies inside or outside the feasible volume.

3.3 Phase 2: Searching inside the Feasible Volume with PSO

Swarm Intelligence is an Artificial Intelligence paradigm,which relies on the exploita-
tion of the (simulated) behavior of self-organizing agentsfor tackling complex control
and optimization problems. In particular, PSO [5] is a population-based method for
global optimization, whose dynamics is inspired by the social behavior that underlies
the movements of a swarm of insects or a flock of birds. These movements are directed

toward both the best solution to the optimization problem found by each individual and
the global best solution.

More formally, given aD-dimensional (compact) search spaceS ∈ R
D and a scalar

objective functionf : S → R that assesses the quality of each pointx ∈ S and has
to be maximized, aswarm is made up of a set ofN particles, which are located in that
space. Thei-th particle is described by threeD-dimensional vectors, namely:

– the particle currentposition xi = (xi1 , xi2 , . . . , xiD
);

– the particlevelocity vi = (vi1 , vi2 , . . . , viD
), i.e., the way the particle moves in the

search space;
– the particlebest visited position (as measured by the objective functionf) Pi =

(pi1 , pi2 , . . . , piD
), a memory of the best positions ever visited during the search.

The index of the particle that reached the global best visited position is denoted byg,
that is,g = arg maxi=1,...,N F (Pi).

At the beginning of the search (stepn = 0), the particles are set at random locations
and with random velocities. The search is performed as an iterative process, which at
stepn modifies the velocity and position vectors of each particle on the basis of the
values at stepn− 1. The process evolves according to the following rules (superscripts
denote the iteration number):

vn
i = wn−1vn−1

i + c1r1

(

pn−1

i − xn−1

i

)

+ c2r2

(

pn−1

g − xn−1

i

)

(1)

xn
i = xn−1

i + vn
i i = 1, 2, . . . , N (2)

In these equations, the valuesr1 andr2 are two uniformly distributed random num-
bers in the[0, 1] range, whose purpose is to maintain population diversity. Constantsc1

andc2 are respectively the so-calledcognitive andsocial parameters, which are related
to the speed of convergence. The valuewn is an inertia weight and it establishes the
influence of the search history on the current move. A high weight is related to a global
exploration, while a low weight allows a local exploration (also called exploitation). In
Section 4, we will discuss the values we have chosen for all the parameters (including
the number of particles and iterations).

Since at each iteration a solution to the problem is available (although it could not
be the optimal one), PSO belongs to the family ofanytime algorithms, which can be
interrupted at any moment still providing a solution. In thegeneral case, however, the
iterative process is run until either a pre-specified maximum number of iterations has
elapsed or the method has converged (i.e., all velocities are almost zero).

Having overviewed how PSO works, we now describe how we use itfor searching
inside the feasible volumes computed in the previous phase.In our case, the PSO search
space is composed by all camera parameters, so it is a subset of R

7. In particular, each
particle position inR7 completely defines a camera, i.e. it assigns a value to each ofthe
7 camera parameters (3 position coordinates, 3 orientationangles, and FOV angle):

– the first three dimensions (x0, x1, x2) correspond to the camera position. These
values will be kept inside the feasible volume during the optimization process;

– the second three dimensions (x3, x4, x5) correspond to the camera orientation, each
ranging from 0 to2π;

– the last dimension (x7) corresponds to the camera FOV, ranging from a minimum
to a maximum value;

In other words, PSO will optimize all camera parameters, but, with respect to the camera
position (first three dimensions of the search space), search will be restricted inside the
feasible volume computed in the previous phase. In practice, to check if a particle is
inside or outside the feasible volume, we simply usex0, x1, andx2 as arguments to the
implicit functions derived in phase 1.

At the beginning of the search,N particles are set at random locations inside the
feasible volumes (i.e., we randomly generate particles until we obtainN of them inside
the feasible volume). Since particles might exit the feasible volume during the execution
of PSO, after each iteration we check each particle with respect to the implicit functions
(i.e., we check the position of the camera defined by the particle) and, if the particle is
not in the feasible volume, we assign it the worst possible value of the objective function
(i.e., 0). This will make the particle return into the feasible volume in the next iterations.

The objective function is built by taking into account the following object-related
properties:Object view angle, Object inclusion in the image, Object projection Size,
Object Position in Frame, andObject Occlusion. The degree of satisfaction of each
property is evaluated by means of a functionf : Π × S → [0, 1] whose semantics
depends on the propertyπ ∈ Π at hand. In general, the function measures a relative
difference between the desired value for the property and its actual value. The value of
f is then normalized in order to obtain a real value in the range[0, 1], where 1 repre-
sents the satisfaction of the associated constraint and 0 iscomplete unfulfillment. For
example, to evaluate an Object Position in Frame Property, we calculate the projection
of the object bounding sphere, and then determine how much this projection covers the
specified rectangular region. In the case of an occlusion property, we calculate the value
of f by ray casting from the camera to the bounding box of the object (one to the center
of the bounding box, and 8 to its corners), and testing intersections of the rays with
other objects in the scene (where the number of rays intersecting other objects gives the
percentage of occlusion). This is not optimal, since it might be problematic for large
occluders and not very precise with respect to the expression of partial occlusion. How-
ever, how the satisfaction of each property is calculated isindependent from PSO, and
can thus be improved maintaining the general solving process. For the other properties,
the calculation of the objective function is similar to the ones described in [1, 3, 4].

When atomic properties are combined by∧ connectors, the combined objective
function is computed asf(π1 ∧ π2,x) = w1f(π1,x) + w2f(π2,x), where the weights
wi are those given as last argument to each property.

In general, the evaluation of a particle requires the function f to be computed for
all the properties of the image description. However, this process can be quite time
consuming, especially in the case of complex image descriptions or with properties that
require a computationally intensive evaluation (e.g., occlusion). Therefore, we adopt
a lazy evaluation mechanism for the objective function: the computation of f for the
particle i is stopped if the sum of the weights of the properties that still have to be
evaluated is smaller than the best objective valuef(π,Pi). Therefore, as a heuristic, it

could be useful to sort the properties leaving at the end the ones whose evaluation has a
higher computational cost.

4 Implementation and experimental results

The VCC approach described in the previous section has been implemented as a part
of a general C++ library which can be used in 3D applications.The library includes,
besides the PSO solver, a discretized, exhaustive search-based algorithm (hereinafter
called EXH) which follows the approach described in [1]. Thefirst phase is identical
for PSO and EXH. In the second phase, EXH scans a grid ofn × m × o points in the
3D scene (wheren, m ando can be varied depending on the desired resolution). For
each point in the grid, when it is inside the feasible volume,EXH considers a finite
set of camera orientations (with differ by 15 degrees in eachEuler angle) and FOV
values, and for each one it evaluates the objective functionexactly as PSO (including
lazy evaluation). After having considered all points, or when the value of the objective
function is sufficiently close to the optimum, EXH returns the best found camera.

In our experimentation, we will consider three increasingly complex VCC problems
and show the resulting cameras generated by PSO and EXH. To make the test more
realistic, we have set all the problems in the 3D model of a medieval village (which
can be visited atudine3d.uniud.it/venzone/en/index.html), so that in
evaluating occlusions the algorithms will have to take intoaccount several objects.

All the VCC problems have been solved 100 times each with bothalgorithms. Since
the PSO approach can produce different cameras in differentruns of the same problem,
we will show more cameras for each problem solved by PSO, and just one camera for
EXH (which calculates the same camera in each run). Then, we will discuss the com-
putational performances. For PSO, we have employed in each problem a population of
64 particles and limited the maximum number of iterations to50. These parameter val-
ues have been determined through experimentation, and havedemonstrated to be fairly
robust in all tests we have made. For the other parameters of PSO, we have employed
c1 = c2 = 0.5 and an inertia weightw which linearly decreases from an initial value of
1.2 to 0.2, in order to balance between exploration and exploitation at different stages
of the search. These values are considered a good choice in many problems to which
PSO has been applied.

For EXH, we have employed in each test the smallest grid (in terms of number of
points) such that the algorithm was able to generate a camerawith fitness value close
the one PSO was able to compute. Moreover, both approaches have been set to stop the
search when they reach the threshold of 98% of optimal value.Both algorithms have
been compiled with Microsoft Visual Studio 2005 C++ compiler and run on an Athlon
64 X2 5000+ (2.4 GHz), 4 GB ram running Microsoft Windows XP.

In each of the following tests, we have introduced a set of properties to limit camera
orientation and FOV to suitable values. More specifically, we lock the up vector of the
camera parallel to the world Y axis and the FOV to the value currently being used by
the rendering engine, and limit the camera position inside abox containing the whole
scene. The common properties used in the tests presented in this paper are listed the
following (in all listings we omit the∧ connectors).

(a) (b)

(c) (d)

Fig. 1: Cameras computed from the properties listed in 1.2: (a) camera computed by EXH con-
sidering a25 × 25× 25 grid of possible camera positions; (b,c,d) cameras computed by PSO in
three different runs.

Listing 1.1: Properties common to all problems
camBindRoll(0, 0)
camAspectRatio(currentScreenAspectRatio)
camBindFOV(currentCameraFOV)
camBindX(x_{min}, x_{max})
camBindY(y_{min}, y_{max})
camBindZ(z_{min}, z_{max})

Over the shoulder shot. The objective of this problem is to obtain a typicalover the
shoulder shot that shows the spatial relationship between two characters in the scene.
The resulting cameras are shown in Figure 1.

Listing 1.2: Over the shoulder
camOutsideObject(blueWarrior)
objOcclusion(blueWarrior, 0.0, 1.0)
objInFOV(blueWarrior,1.0,1.0)
camOutsideObj(redWarrior)
objOcclusion(redWarior, 0.0, 1.0)
objInFOV(redWarrior,1.0,1.0)
objHAngle(redWarrior, -180, 90, 1.0)
objProjSize(redWarrior, 0.3, 1.0)
objVAngle(redWarrior, 45, 15, 1.0)

Occlusion. The objective of this problem is to obtain an image where one of three
characters in the scene (whose relative positions are shownin Figure 2a) is completely

(a) (b) (c)

(d) (e) (f)

Fig. 2: Cameras computed from the properties listed in 1.3: (a) an image showing the relative
position of three warriors in the scene; (b) camera computedby EXH considering a10× 10× 10

grid of possible camera positions; (c,d,e,f) cameras computed by PSO in four different runs.

occluded, while the others are completely visible. The resulting images are shown in
Figure 2. Note that, in this case, the cameras produced by PSO(Figures 2c and 2d) in
different runs are quite different.

Listing 1.3: Occlusion
camOutsideObject(blueWarrior)
objOcclusion(blueWarrior, 0.0, 1.0)
objInFOV(blueWarior,1.0,1.0)
camOutsideObject(redWarrior)
objOcclusion(redWarior, 0.0, 1.0)
objInFOV(redWarrior,1.0,1.0)
objOcclusion(blackWarrior, 1.0, 1.0)

Navigation aid. One interesting possibility is to use automatically generated cameras
to help users in orienting themselves and in reaching placesof interest in virtual en-
vironments. For example, by augmenting the scene with semantic information about
landmarks, points of interest, and paths, one could derive generic rules that compute
(and present to the user during navigation) cameras that highlight the most important
or closer navigational elements. This could help users to: (i) learn landmarks during
exploration and therefore increase the acquisition of navigational knowledge; (ii) see
and recognize landmarks during orientation and search. By also including the user’s
avatar in the computed image, it is also possible to highlight the current spatial rela-
tion between the user’s actual position and the navigational elements in the scene. The
following problem regards a situation where we have some landmarks (the cathedral
dome, its tower, the town hall tower and the baptistery) and we would like to compute

cameras that shows the avatar at a certain size (most important requirement, otherwise
the user could not be able to find its position), plus most possible landmarks. The results
obtained with different position of the user’s avatar (which is the green character in the
images) are reported in figure 3. Note that requests cannot befully satisfied in any run,
but nevertheless the computed cameras are at least able to highlight the user’s position
with respect to some of the landmarks.

Listing 1.4: Navigation Aid
objProjSize(avatar,0.1,5.0)
objOcclusion(avatar, 0.0, 10.0)
objInFOV(avatar,1.0,12.5)
objOcclusion(baptistery, 0.0, 1.0)
objInFOV(baptistery,1.0,1.0)
objOcclusion(town_hall_tower, 0.0, 1.0)
objInFOV(town_hall_tower,1.0,1.0)
objOcclusion(cathedral_dome, 0.0, 1.0)
objInFOV(cathedral_dome,1.0,1.0)
objOcclusion(church_tower, 0.0, 1.0)
objInFOV(church_tower,1.0,1.0)

4.1 Performances

For each run, we have recorded the execution time (which includes both phases) and the
quality of the generated camera, i.e. the best value of the fitness function. As it is shown
in table 1, PSO is consistently faster than EXH, even when thegrid resolution employed
by EXH is ad-hoc set to minimize the number of considered points while still producing
images with quality close to PSO. On the contrary, PSO parameters have not been
changed across the problems. However, theoretically one could obtain better results
by tuning the the size of the swarm depending on the number of properties defined.
Note also that this result was not straightforward before doing the tests, since EXH
works on a discretization of the search space, while PSO works in a continuous search
space. With respect to the quality of the generated cameras,in the first two problems
PSO obtains values of the fitness function close to the optimum (e.g. 4.87 out of 5 in the
first problem), while in the last problem it is impossible to fully satisfy all requirements
and therefore the degree of satisfaction is lower (28.73 outof 37.5).

As one can see from the table, one of the issues with PSO is the variance in the time
needed. However, if there is the need of guaranteeing a solution within a certain amount
of time, the algorithms has the nice property of being stoppable anytime and return a
(possibly non optimal) solution.

time (ms) quality
PSO EXH PSO EXH

Problem min max average std. dev.averagebest value std. dev.best value

over the shoulder (1.2)33 319 151 36.24% 541 4.87/5.0 5.13% 4.84/5.0
occlusion (1.3) 58 737 443 36.95% 921 4.78/5.0 2.51% 4.80/5.0

navigation aid (1.4) 1762 3348 2235 16.63%8993 28.73/37.5 6.41%28.23/37.5
Table 1: Performance data collected in 100 runs for PSO and EXH

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3: Cameras computed from the properties listed in 1.4. Each row shows images computed
with the user’s avatar in different positions. For each row,the left image has been computed by
EXH considering a15× 15 × 15 grid of possible camera positions; the center and right images
have been computed by PSO.

From the results obtained, another evidence is that execution times generally depend
on the number and nature of the properties that are evaluatedwith fitness functions, with
occlusions, as noted in the literature, being the most costly evaluation.

5 Conclusions

We have presented a PSO approach for the VCC problem. The proposed method works
with static scenes and performs significantly better than anexhaustive search on a dis-
cretization of the space. Nevertheless, additional experiments on other scenes and image
descriptions should be carried out to evaluate the method more thoroughly. With respect
to this point, one goal for future work that could benefit the entire research area is to de-
fine a benchmark comprising a set of representative and realistic scenes and problems,
thus allowing the experimental comparison of proposed methods in the literature.

Acknowledgments. The authors acknowledge the financial support of the ItalianMin-
istry of Education, University and Research (MIUR) within the FIRB project number
RBIN04M8S8.

References

[1] W. Bares, S. McDermott, C. Boudreaux, and S. Thainimit. Virtual 3d camera com-
position from frame constraints. InProceedings of the eighth ACM international
conference on Multimedia, pages 177–186. ACM, New York, NY, USA, 2000.

[2] W. H. Bares, J. P. Gregoire, and J. C. Lester. Realtime constraint-based cinematog-
raphy for complex interactive 3d worlds. InAAAI/IAAI, pages 1101–1106. 1998.

[3] M. Christie and J.-M. Normand. A semantic space partitioning approach to virtual
camera control. InProceedings of the Annual Eurographics Conference, pages
247–256. 2005.

[4] M. Christie and P. Olivier. Automatic camera control in computer graphics. InPro-
ceedings of the Annual Eurographics conference - State of the Art Reports, pages
89–113. 2006.

[5] R. C. Eberhart and J. Kennedy. Particle swarm optimization. InProceedings of the
IEEE International Conference on Neural Networks 1995, volume 4, pages 1942–
1948. 1995.

[6] N. Halper and P. Oliver. CamPlan: A camera planning agent. In Smart Graphics
2000 AAAI Spring Symposium, pages 92–100. 2000.

[7] J. Kennedy, R. C. Eberhart, and Y. Shi.Swarm Intelligence. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 2001. ISBN 978-1-55860-595-4.

[8] J. H. Pickering.Intelligent Camera Planning for Computer Graphics. PhD thesis,
Department of Computer Science, University of York, 2002.

