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Abstract 
Relaxation training is an application of affective computing with important implications for 
health and wellness. After detecting user’s affective state through physiological sensors, a 
relaxation training application can provide the user with explicit feedback about his/her 
detected affective state. This process (biofeedback) can enable an individual to learn over 
time how to change his/her physiological activity for the purposes of improving health and 
performance. In this paper, we provide three contributions to the field of affective computing 
for health and wellness. First, we propose a novel application for relaxation training that 
combines ideas from affective computing and games. The game detects user’s level of stress 
and uses it to influence the affective state and the behavior of a 3D virtual character as a form 
of embodied feedback. Second, we compare two algorithms for stress detection which follow 
two different approaches in the affective computing literature: a more practical and less 
costly approach that uses a single physiological sensor (skin conductance), and a potentially 
more accurate approach that uses four sensors (skin conductance, heart rate, muscle activity 
of corrugator supercilii and zygomaticus major). Third, as the central motivation of our 
research, we aim to improve the traditional methodology employed for comparisons in 
affective computing studies. To do so, we add to the study a placebo condition in which 
user’s stress level, unbeknown to him/her, is determined pseudo-randomly instead of taking 
into account his/her physiological sensor readings. The obtained results show that only the 
feedback presented by the single-sensor algorithm was perceived as significantly more 
accurate than the placebo. If the placebo condition were not included in the study, the 
effectiveness of the two algorithms would have instead appeared similar. This outcome 
highlights the importance of using more thorough methodologies in future affective 
computing studies. 
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1. Introduction 
Affective computing systems aim at detecting user’s affective state and change their 

behavior based on that information (Picard, 1997). Relaxation training is one of the 
applications of affective computing which have important implications for health and 
wellness. After detecting user’s affective state using physiological sensors, the application 
can provide the user with explicit feedback about his/her detected affective state. This 
process (biofeedback) can enable an individual to learn over time how to change his/her 
physiological activity for the purposes of improving health and performance (Association for 
Applied Psychophysiology and Biofeedback, 2011).  

More specifically, biofeedback applications measure users’ physiological signals like 
electrodermal activity (EDA) and heart rate (HR), and “feed back” this information to the 
user who, over time, can learn to consciously control his/her physiological processes and 
support the desired physiological changes. Biofeedback is employed to improve individual 
well-being in the treatment of medical and medical-related conditions, such as pain (Jensen et 
al., 2009), incontinence (Enck, 1993), migraine (Fentress, Masek, Mehegan, & Benson, 
1986). Moreover, it can be used to reduce stress-related symptoms (Bouchard, Bernier, 
Boivin, Morin, & Robillard, 2012) and enhance personal well-being (Chandler, Bodenhamer-
Davis, Holden, Evenson, & Bratton, 2001). 

Many biofeedback systems in the literature still employ very simple acoustic or visual 
cues to provide users with information about their stress level, e.g., alarm sounds that are 
activated when a physiological signal reaches a certain threshold or virtual thermometers 
whose level is directly related to user’s arousal. However, in recent years, some authors 
started to employ richer stimuli such as virtual reality and video games to convey 
biofeedback to users, e.g. (Bersak et al., 2001; Bouchard et al., 2012). An advantage of this 
approach is that immersive and realistic virtual environments (VEs) draw more of the users’ 
attention and can make the feedback more effective (Bersak et al., 2001).  

The goal of this paper is threefold. First, we propose a novel biofeedback application 
for relaxation training that combines ideas from affective computing and games. We employ 
a 3D VE to present users with real-life simulated scenarios in which they have to focus on 
maintaining relaxation when faced with stressors. The level of stress detected through 
physiological signals determines the facial expressions as well as the behavior of a virtual 
character that represents the player in the VE. This relation between user’s affective state and 
the virtual character provides users with an embodied visual and acoustic feedback about 
their state of relaxation. To detect users’ level of stress, the game can employ up to four 
physiological sensors: EDA, HR, and two electromyography (EMG) sensors, which 
respectively measure the activity of corrugator supercilii and zygomaticus major muscles. 

Second, we compare the perceived quality of the feedback provided by two versions 
of the game, which differ only in the stress detection algorithm they use. To relate our 
research to well-known approaches proposed in the affective computing literature, one of the 
stress detection algorithms we implemented is inspired by Healey and Picard (1998) while 
the other follows Mandryk and Atkins (2007). In particular, the first approach exploits only 
the EDA sensor while the second considers all the four physiological sensors mentioned 
above to compute the stress index for the biofeedback application. We are interested in 
comparing these two approaches in the context of biofeedback-based relaxation training 
because they may have different advantages: a single-sensor approach is more practical and 
less costly, but the use of multiple physiological sensors may improve the accuracy of stress 
detection by taking into account different bodily responses.  

Third, as the central motivation of our research, we aim to improve the traditional 
methodology employed for comparisons in affective computing studies.  To do so, we add to 
the study a placebo condition in which user’s stress level, unbeknown to him/her, is 



 

 

determined pseudo-randomly instead of taking into account his/her physiological sensor 
readings. In medical studies, placebo conditions (i.e., conditions in which a sham instead of a 
real treatment is administered to participants) are commonly employed because factors such 
as participants’ suggestibility could lead to improvements even with sham treatments. The 
purpose of the placebo condition is therefore to experimentally evaluate if the proposed 
treatment (e.g., a pill containing a new drug) is really superior to the sham treatment (e.g., a 
pill that looks like the real drug but does not actually contain it). In affective computing 
studies, one cannot rule out the possibility that the suggestibility of participants could alter 
their perception of the feedback provided by the application, leading them to believe that a 
real biofeedback system is in place although the provided feedback is actually sham. The use 
of a placebo condition is common in the biofeedback literature for the evaluation of the long-
term efficacy of biofeedback therapy based on simple stimuli, often with interesting results, 
e.g. (Hunyor et al., 1997). In studies of affective computing systems, it could be interesting to 
include placebo conditions in long-term evaluations as well as in evaluations of the 
immediate perceived accuracy of the rich feedback provided by the application to determine 
if the - often complex and costly - affective computing techniques are actually playing a 
significant role in the effectiveness of the feedback. However, to the best of our knowledge, 
the affective computing literature has not yet explored this way of evaluating systems. 

The paper is organized as follows. In Section 2, we review the literature on 
biofeedback applications and evaluation of affective computing systems. Section 3 describes 
in detail the proposed biofeedback game. Then, Sections 4 and 5 describe in detail our 
experiment and its results, while Section 6 critically discuss the results. Finally, Section 7 
presents conclusions and future work. 

 
 

2. Related Work 
Three professional biofeedback organizations, the Association for Applied 

Psychophysiology and Biofeedback (AAPB), the Biofeedback Certification International 
Alliance (BCIA), and the International Society for Neurofeedback and Research (ISNR), 
define biofeedback as follows: 

 
Biofeedback is a process that enables an individual to learn how to change 
physiological activity for the purposes of improving health and performance. Precise 
instruments measure physiological activity such as brainwaves, heart function, 
breathing, muscle activity, and skin temperature. These instruments rapidly and 
accurately "feed back" information to the user. The presentation of this information - 
often in conjunction with changes in thinking, emotions, and behavior - supports 
desired physiological changes. Over time, these changes can endure without 
continued use of an instrument. (Association for Applied Psychophysiology and 
Biofeedback, 2011) 

The use of biofeedback in relaxation training and stress treatment is widely described 
in the literature. It aims to improve trainees’ health and wellness by increasing their ability to 
relax, and to make them learn how to better cope with stress. Indeed, high levels of arousal 
are often hallmarks of anxiety disorders and stress (Chandler et al., 2001), which can threaten 
well-being, safety and security (Carr, 2006). Interventions such as biofeedback-assisted 
relaxation training could reduce stress-related symptoms (Chandler et al., 2001), improve 
quality of life (Pistoia, Sacco, & Carolei, 2013) and increase feelings of well-being (Chandler 
et al, 2001; Critchley et al., 2001; Pistoia et al., 2013). 



 

 

Biofeedback-based relaxation training is also used in the treatment of some medical 
conditions such as chronic pain (Jensen et al., 2009), fibromyalgia (Buckelew et al., 2005), 
migraine (Fentress et al., 1986; Pistoia et al., 2013; Vasudeva, Claggett, Tietjen, & McGrady, 
2003), and hypertension (Hunyor et al., 1997). In these cases, biofeedback leads to positive 
effects on patients’ health and wellness that, in some cases, are at least comparable to 
traditional therapies (Buckelew et al., 2005, Jensen et al., 2009, Vasudeva et al., 2003). To 
further improve the efficacy of the intervention, the integration of biofeedback with 
traditional therapies is often considered, e.g. (Pistoia et al., 2013). The fact that biofeedback-
based treatments, while effective, do not provide in some cases significant advantages over 
classic therapies led some authors, e.g. (Fentress et al., 1986) to question whether the cost of 
biofeedback equipment is justifiable when simpler and less expensive alternatives are 
available. For example, relaxation response (Benson, 1975), i.e., a set of coordinated 
physiological changes related to a state of increasing relaxation, can be brought forth when a 
person focuses attention on a repetitive mental activity (e.g., repeating a word or a phrase) 
and passively ignores distracting thoughts (Fentress et al., 1986). 

Jensen et al. (2009) underline a common limitation of many biofeedback-based 
therapy studies in the literature, which often focus only on the short-term effects of the 
therapy on patients’ medical conditions, without paying much attention to longer-term 
effects. For example, this issue is apparent in studies that apply biofeedback to the treatment 
of gastrointestinal and pelvic floor disorders. The reviews by Enck (1993) and Bassotti and 
Whitehead (1997) report how the application of biofeedback seems to provide short term 
improvements in numerous functional disorders of the gastrointestinal tract, especially those 
related to the lower part of the gut (Bassotti & Whitehead, 1997), but more research is instead 
needed about the long-term effects of biofeedback-based treatments (Enck, 1993).  

Attention deficit-hyperactivity disorder (ADHD) is another common target for 
biofeedback-based treatments, as originally proposed by Lubar & Shouse (1976). The review 
by Lubar (1991) shows that biofeedback training, although time consuming, can lead to 
significant improvements in ADHD, while the meta-analysis by Arns, de Riddler, Strehl, 
Breteler, and Coenen (2009) confirms that it can be regarded as clinically meaningful and its 
clinical effects seem to be stable and might improve further with time. 

To derive physiological indices of arousal and stress, the biofeedback literature often 
exploits EDA and facial EMG, e.g. (Bouchard et al., 2012; Critchley, Melmed, Featherstone, 
Mathias and Dolan, 2001; Critchley, Wiens, Rotshtein, Öhman, & Dolan, 2004; Jensen et al., 
2009; Reynolds, 1984).  Peripheral temperature and cardiac parameters such as HR and heart 

rate variability (HRV) are also employed, e.g. (Bouchard et al., 2012; Shusterman & Barnea, 
2005). In some cases, EMG is used as a direct measure for the specific physiological 
phenomena under treatment. For example, Foster (2004) uses EMG from the masseter muscle 
(located in the jaw) for the biofeedback-based treatment of chronic nocturnal bruxism, and in 
almost all studies of pelvic floor disorders cited above, the activity of pelvic muscles was 
measured to provide biofeedback. Other studies, especially those dealing with the treatment 
of ADHD, employ the electrical activity of the brain (EEG) to infer the affective state of the 
patient. 

The feedback provided to the user by most biofeedback systems cited above is very 
basic. Some systems use simple audio stimuli, e.g. a repeating tone (Foster, 2004; Jensen et 
al., 2009) that decreases in frequency as the EMG activity of masseter and frontalis muscles 
decreases , indicating a lower level of arousal and stress (Jensen et al., 2009) or a diminishing 
intensity of the disorder under treatment (Foster, 2004). In other systems, this very basic 
feedback is visual, e.g. showing the signal graph of one or more physiological signals such as 
frontal EMG (Fentress et al., 1986) or a thermometer whose temperature is positively 



 

 

correlated to EDA level so that higher arousal is represented by higher temperature (Critchley 
et al., 2001; Critchley, Melmed, Featherstone, Mathias and Dolan; 2002).  

The use of much richer feedback based on realistic VEs has been suggested in 
biofeedback training for relaxation and stress management, because VEs draw more of the 
user's attention, providing a much more appealing and effective feedback for achieving the 
correct affective state (Bersak et al., 2001). The biofeedback system described in (Bersak et 
al., 2001) is organized as a racing game: increasing relaxation level helps the user move 
faster inside the game and the player must cope with the high level of arousal elicited by the 
competitive environment of the racing experience. In military applications, graphically 
intense games that employ biofeedback have been considered for increasing soldiers’ mental 
resilience and the effectiveness of their stress management skills. In particular, Bouchard et 
al. (2012) cast doubts on the efficacy of classic approaches to stress management training in 
the military, which are essentially based on providing information and teaching techniques in 
a classroom, and highlight instead the importance of practice. For this reason, they added 
biofeedback-based audio and visual cues to stressful commercial video games as a mean to 
show increasing arousal (derived from HR and EDA signals). The cues included a decreasing 
field of view or the sound of a heart beating at an increasing frequency and loudness. They 
report that this game-based approach was effective in increasing the effectiveness of stress 
management. Dekker and Champion (2007) employed similar feedback cues, but for 
entertainment purposes, enhancing gameplay by detecting players’ arousal calculated from 
HRV and EDA. They report gameplay issues that may have diminished the biofeedback 
effects in their study: usability issues caused by wearing physiological sensors, different 
involvement in gameplay shown by novice and experienced players, and different factors 
(such as room illumination or the use of a computer with a small screen) that had a negative 
effect on participants’ concentration and engagement. Kato (2010) reviews biofeedback-
controlled video games used in hospital settings to treat patients’ with pediatric voiding 
dysfunction or irritable bowel syndrome (IBS). Such systems were able to improve the 
treatment outcome thanks to the ability of game interfaces to increase interest and motivation, 
engaging the patient in the therapy.  

The biofeedback literature provides various examples of comparisons between real 
and placebo biofeedback conditions (Hunyor et al., 1997; Rupert & Holmes, 1978; Tsai, 
Chang, Chang, Lee, & Wang, 2007). Such experiments often led to relevant results, for 
example, Hunyor et al. (1997) observed that their biofeedback treatment of hypertension was 
successful in lowering systolic blood pressure using a real as well as a placebo feedback 
signal. 

The affective computing literature usually assesses the accuracy of emotion detection 
through confusion matrices (Healey & Picard, 2005; Zhai & Barreto, 2006), mean successful 
recognition (Liu, Agrawal, Sarkar, & Chen, 2009; Nasoz, Lisetti, & Vasilakos, 2010; Wu et 
al., 2010), or mean recognition error (Rani, Sarkar, Smith, & Adams, 2007). Comparisons 
among multiple techniques for emotion detection, and in particular stress and anxiety 
detection, are also common, e.g. (Katsis et al., 2008; Lisetti & Nasoz, 2004; Zhai & Barreto, 
2006). In these cases, control conditions are sometimes employed (Nasoz et al., 2010; 
Rezazadeh, Firoozabadi, Hu, & Hashemi Golpayegani, 2012), but to the best of our 
knowledge no comparisons with a placebo condition have been performed. This is 
acknowledged in (Picard & Goodwin, 2008) which explicitly advocates the consideration of 
the placebo effect in experimental designs that evaluate the efficacy of affective computing 
systems. 

 
 
 



 

 

3. The Biofeedback Game 
 By combining ideas from affective computing and games, we propose a novel 

application for relaxation training based on biofeedback. Our game exploits realistic 3D 
graphics to present users with real-life simulated scenarios in which they have to focus on 
maintaining relaxation when faced with stressors. 

Various studies in the literature show that treatments for stress-related disorders that 
employ realistic VEs are as effective as (and in some case better than) traditional cognitive-
behavioral therapies, e.g. (Baños et al., 2011; Gorini & Riva, 2008; Villani & Riva, 2012). 
Unlike biofeedback systems that employ very simple feedback (see Section 2), we focused on 
using 3D graphics to provide players with embodied feedback through a virtual character. 
Once the system infers in real-time the player’s stress level from his/her physiological 
signals, the virtual character in the VE reflects the player’s stress level through facial 
expressions, body postures and movements. The emotions expressed by the virtual character 
through its facial expressions range from happiness to anger, which are basic emotions that 
can be universally associated to unique facial expressions (Ekman and Friesen, 1971). The 
use of these facial expressions in the proposed game should therefore make it easy for players 
to understand the emotions conveyed by the virtual character.   

The sense of embodiment, i.e., the connection between the player’s body in the 
physical world and the body of the virtual character that represents the player in the VE, can 
be a key element for the efficacy of VE-based relaxation treatments (Pallavicini et al., 2013; 
Riva et al., 2007; Villani, Riva, & Riva, 2007). In particular, the more intense is the 
connection, the greater is the player’s sense of being present inside the VE (Riva & 
Mantovani, 2012). 

Each level of the biofeedback game shows the virtual character carrying out a task 
inside a realistic VE, such as an office, a school building or a train station. Different stressors 
can affect the user (and the virtual character that displays his/her affective state) inside each 
VE. To play the various levels of the biofeedback game, users have to relax and remain 
centered on their relaxation state, without being distracted or affected by the stressors. By 
doing so, they allow the virtual character to accomplish goals in the VE. For example, in one 
of the levels set in the school building VE, the goal is to evacuate safely during a fire 
emergency; the stressors are a combination of alarm sound, explosion sound and visual cues 
(smoke clouds and injured persons). If the player keeps his/her stress level low, the virtual 
character walks along the path to the emergency exit. The character gets slower and slower as 
the player’s level of stress increases, eventually coming to a halt and shivering, until the 
player is able to reach a sufficient level of relaxation that allows it to resume walking. In 
another level set in the school building, the player is attending a class and has to attentively 
listen to the lecturer, but the other students around him/her produce long and annoying chatter 
at three different times during the brief lecture. If the player’s level of stress increases, the 
volume of the lecturer’s voice decreases, making it harder to achieve the goal.  

Stressors are employed by some of the biofeedback-based applications for relaxation 
training proposed in the literature, e.g., (Bersak et al., 2001; Bouchard et al., 2012). By 
exposing players to stressful stimuli, the player not only learns how to relax, but (s)he learns 
to do it in a stressful environment, which is a fundamental element of biofeedback-based 
therapies such as stress inoculation training (SIT).  
 
3.1. First level of the game 

In the first level of the game, which is the one employed in the experiment described 
in this paper, the virtual character is called Andrew and the introductory screen informs the 
player that Andrew has just been hired by a big company and asked to write a business plan 



 

 

as a first assignment. The level shows Andrew working in front of a PC, inside a typical 
office environment. 

The goal of the player is to allow Andrew to complete the assigned task: the more the 
user is relaxed, the more the character is relaxed and the larger the final score (percentage of 
work completed by Andrew) will be.  The score is shown at the end of the level, which lasts 3 
minutes. To complete the assignment, Andrew has to remain relaxed and work continuously 
at the PC, ignoring a distracting stressor, i.e., a phone that occasionally rings on the desk. In 
particular, we have set this stressor to occur 3 times during the level: the first time for 10 s, 
the second for 20 s, and the third for 30 s. The first, second and third occurrence of the 
stressor respectively start 20 s, 50 s, and 90 s after the beginning of the level. The situation 
reproduced by the level is common in an office context, and thus should be easily and quickly 
understood by players. 

 To play the level, the user does not interact with Andrew using traditional game 
controllers such as mouse, keyboard, or gamepads, but by trying to control his/her relaxation 
state. If the user is calm and relaxed, then Andrew focuses on progressing in the task and 
smiles. As user’s stress level increases, Andrew becomes more and more unsettled, less and 
less focused on the work, and shows discontentment through facial expressions and 
mumblings of growing intensity. When the phone rings, the virtual camera slightly zooms out 
to include in the current view the phone on the desk. 

Andrew can be in one of five different states, each one characterized by distinct 
behaviors (i.e., body gestures, facial expressions and vocal expressions), depending on user’s 
level of stress. In the following, we describe in detail all behaviors employed in the first level 
of the game, listing the states of the character in increasing level of stress: 
• State 1: the character is completely relaxed. Seated on its chair, Andrew is working at the 

PC using mouse and keyboard (Figure 1a and 1b), and watching the PC screen with a smile 
on its face (Figure 1c); 

• State 2: the character starts to show some signs of uneasiness. Andrew continues to work at 
its task (Figure 1d and 1e), but sometimes moves its chest towards the screen (Figure 1d), 
mumbles, and shakes its head; it starts to frown, and its smile starts to fade (Figure 1e); 

• State 3: the character is more unsettled than State 2. Its head shakes more frequently, and 
the mumblings are louder; frowning is more visible, and the smile has disappeared (Figure 
1g). Andrew tries to continue working as in Figure 1a and 1b, but sometimes stops for a 
few seconds, reclines back and puts its hands on the legs (Figure 1f); 

• State 4: the character cannot focus on its task anymore. Andrew stops working (Figure 1h); 
the mumblings get increasingly loud, and its face becomes tense and angry (Figure 1i). 
Sometimes, the character raises its hands (Figure 2a and 2b), and throws a punch on the 
table (Figure 2c); 

• State 5: the character reaches its maximum level of stress. Its face becomes angrier (figure 
1k), it raises its hands (Figure 1j) and throws a sequence of punches on the table (Figures 
2b and 2c); its mumblings turn into shouts. 



 

 

Figure 1. Screenshots of the virtual character in its five different states. 
 



 

 

Figure 2. Screenshots of the virtual character raising its hands and punching the table. 
 

We built the animations employed in the five states by performing multiple sessions 
of human motion capture with an 8-cameras OptiTrack ARENA system, to make Andrew’s 
body movements as realistic as possible. Facial animations were instead modeled by key 
framing, and were slightly emphasized to make it easier for users to interpret them. Facial 
and body animations were then integrated in the game in such a way that, during a state 
change, the previous behavioral animation can seamlessly blend into the subsequent one, 
without abrupt changes that would make the whole behavioral sequence unrealistic. 

We defined the five states in such a way that the stress level displayed by Andrew 
could grow progressively from the first to the fifth. To pre-test the understandability and the 
clarity of the five states and their progression and evaluate if users could correctly interpret 
them, we conducted a pilot study with 10 participants (7 M, 3 F), with a mean age of 31 (SD 
= 4.08). We recorded a 10-s video of each state, and showed the five videos to each 
participant following a Latin square design. Then, we asked participants to rank the videos in 
increasing order of stress displayed by the character. All participants were able to correctly 
rank the five states without making any errors. 
 
3.2. Physiological Measures  

We acquire users’ raw physiological signals in real time at 2048 Hz through a 
Procomp Infiniti device. From them, we calculate a stress index, sending it to the game at an 
8 Hz frequency. This section introduces the four physiological signals we acquire, while 
Section 3.3 illustrates how we compute the stress index. 

 
3.2.1. Electrodermal activity. 
EDA is a measure of the electrical conductivity of the skin surface (Andreassi, 2007) 

and is one of the most frequently employed physiological signals for stress detection. EDA 
changes can be produced by various physical and emotional stimuli that trigger variations in 
the eccrine sweat gland activity, which, unlike many other bodily functions, is regulated 
exclusively by the sympathetic nervous system (SNS) (Boucsein, 2006). The SNS controls 
those activities that are mobilized during emergency and stress situations (fight-or-flight 
response). In situations that evoke high level of arousal, an increase in the activity of the 
sweat glands can be observed (Boucsein, 2006), leading to what is called emotional sweating. 
An increase in sweating causes a sharp increase of skin conductance, that can be recorded 
after about 1 s from the event (skin conductance response, the phasic component of the EDA 
signal). If no other stressful stimulus is provided, the EDA signal then slowly decreases, 
reaching after about 4 s a basal value (skin conductance level, representing the tonic 
component of the signal) that is strongly related to the person’s overall level of arousal. 



 

 

Emotional sweating is observed mainly on palmar and plantar sites. Therefore, EDA 
is usually measured on the palms of the hands or on the fingers, with a current (imperceptible 
to users) applied between a pair of electrodes placed on two adjacent fingers (Andreassi, 
2007). There is normally no need for a pretreatment (i.e., skin cleaning) of the sites used for 
EDA recording. 

As reported in the literature, EDA is a suitable physiological signal in the 
measurement of arousal and stress. In particular, EDA is regarded as a sensitive and valid 
indicator for the lower arousal range, reflecting small, mostly cognitively determined, 
variations in arousal, and has been widely employed in the psychophysiology and affective 
computing literature for this purpose, e.g. (Fleureau, Guillotel, & Huynh-Thu, 2012; 
Friedman, Suji, & Slater, 2007; Mandryk & Atkins, 2007; Rani et al., 2007; Scheirer, 
Fernandez, Klein, & Picard, 2002). 

 
3.2.2. Blood volume pulse and heart rate. 
The blood volume pulse (BVP) signal is an indication of the amount of blood flowing 

into the peripheral vessels, like the ones in the fingers, which is generally measured through a 
photoplethysmograph (PPG). The PPG, usually placed on the distal phalanx of the index 
finger, generates a subtle IR light that is reflected by the capillaries under the skin by an 
amount that is proportional to the quantity of blood flowing through them. The signal shows 
a regular pattern made of peaks and valleys, from which various physiological features can be 
extracted. HR is the frequency of the heartbeat measured in beats per minute (bpm), 
calculated from the BVP signal by counting the number of peaks per minute, and is one of 
the most common physiological parameters that can be employed in stress detection. 
Increases in HR are generally related to emotional activation (as in EDA), and have been 
used in the literature as a correlate of arousal and stress (Katsis et al., 2011; Lisetti & Nasoz, 
2004; Mandryk & Atkins, 2007; Nasoz et al., 2010; Slater et al., 2006). During events 
evoking high levels of arousal, the heart pumps blood at higher frequency, leading to an 
increase of HR. Compared to EDA, HR is well suited as an indicator for the higher arousal 
range and for pronounced and often somatically determined arousal processes (Boucsein, 
2006). 

The main disadvantage of measuring HR through a PPG is that the sensor is very 
sensitive to hand motions, and encumbers the movement of the user’s hand. HR can be also 
measured with sensors that are more robust against motion artifacts, such as 
electrocardiogram (ECG) electrodes. These electrodes, however, must be placed in direct 
contact with the skin of the user’s chest, which is less practical and may also be 
uncomfortable for some users. In the literature, when BVP is preferred to ECG, researchers 
typically ask participants to avoid movements of the hand with the PPG during the 
experiment. 

 

3.2.3. Facial electromyography. 

The activity of specific facial muscles is strongly related to positive or negative 
emotional valence (Andreassi, 2007). In particular, the zygomaticus major (located in the 
cheek) and the corrugator supercilii (located in the forehead) help to distinguish between 
positively- and negatively-valenced high-arousal emotions (excitement vs. stress), as reported 
by many studies, e.g. (Fleureau et al., 2012; Liu et al., 2009; Mandryk & Atkins, 2007). 
These connections are not surprising since zygomaticus muscles are responsible for smiling, 
while corrugator muscles are responsible for frowning. 

The contractions of each muscle fiber generate a small electrical discharge that can be 
measured through an electrode placed over the skin above the muscle. When the muscle is 
under load, the electrodes record a signal composed by a series of discharges. This electrical 



 

 

activity is called surface EMG (SEMG), to distinguish it from the EMG measured under the 
skin directly from the muscle. The electrodes employed for facial muscle activity 
measurement in psychophysiology are able to detect subtle, subconscious muscle 
contractions that can go unnoticed by an experimenter observing the user’s face, and that are 
strongly related to the affective state of the user. 

Typically, the setup required to measure the SEMG signal of a muscle consists of two 
active electrodes placed along the long axis of the muscle, and an inactive electrode (ground) 
(Andreassi, 2007). To better detect the electrical activity of the underlying muscle, skin 
cleaning is required, e.g., with alcohol. The recorded signal is typically (i) filtered to remove 
components under 20-50 Hz and over 500 Hz, thus keeping only the components related to 
muscle contraction (Andreassi, 2007), (ii) rectified (the raw EMG is a bipolar signal) using a 
root mean square (RMS) algorithm, and (iii) smoothed using a moving window, to reduce the 
impact of motion artifacts. 
 
3.3. Users’ Stress Detection 

To detect users’ stress, our study tests two different algorithms. The first employs 
only the EDA signal, while the second integrates different physiological signals. The 
implemented algorithms respectively derive from those presented in (Healey & Picard, 1998) 
and (Mandryk & Atkins, 2007). We have chosen these two algorithms because they are well-
known and representative of two categories of stress detection algorithms: a more practical 
and less costly approach that uses a single sensor (EDA), and a potentially more accurate 
approach that uses four sensors (EDA, HR, EMG of corrugator supercilii, EMG of 
zygomaticus major). The EDA-based algorithm by Healey and Picard was originally 
developed to detect users’ SCRs through a wearable computer, while the algorithm by 
Mandryk and Atkins was developed to detect users’ arousal and valence state as well as the 
level of five discrete emotions (fun, challenge, boredom, frustration, and excitement).  

In implementing the multi-sensor algorithm, we have followed the description 
provided in (Mandryk, 2005; Mandryk & Atkins, 2007) as closely as possible. In 
implementing the EDA-only algorithm, we generally followed the approach described in 
(Healey & Picard, 1998) but we changed the filtering of the EDA signal to reduce latency as 
much as possible. We keep using the first forward difference of the signal (as in the original 
algorithm) to analyze the signal slope, but for interpreting it as a trend of player’s stress level 
instead of detecting SCRs. 

In the following, we describe how the two implemented algorithms compute a user’s 
stress index from his/her physiological measurements, and how the stress index is instead 
generated pseudo-randomly in the placebo condition of our study. 

 
3.3.1. EDA-only algorithm. 
As in the original algorithm by (Healey and Picard, 1998), our implementation of the 

EDA-only algorithm does not derive users’ stress from the absolute EDA value, but from the 
signal shape. At the beginning of a session, the stress index is set to zero and this makes the 
virtual character start with its lowest stress state (State 1). Then, the algorithm identifies 
rising and declining intervals of the EDA signal (when a stressor affects the user, the EDA 
signal typically rises fast and then declines slowly) by sampling the EDA signal every 0.5 s. 
The algorithm does not use a moving window for signal sampling, but keeps and updates a 
temporary baseline value. The temporary baseline and the stress index are managed as 
follows:  
• If the EDA starts increasing (i.e., the current EDA value is higher than the value of the 

previous sample), the EDA value at the onset is memorized as a temporary baseline value; 



 

 

• During a signal increase phase, when the EDA exceeds for the first time a 0.05 µS 
threshold over the temporary baseline value, the stress index is incremented by 1. The 0.05 
µS threshold is recommended by (Boucsein, 2006) to distinguish a skin conductance 
response from signal fluctuations. If the EDA signal keeps increasing, the stress index (and 
consequently the virtual character state) is incremented by 1 every 3 s. If the stress index is 
4, no further increment is applied. From an increasing EDA, therefore, we generally infer 
an increasing stress level in users. 

• When the EDA starts decreasing (i.e., the current EDA value is lower than the value of the 
previous sample), the current EDA value is memorized as the temporary baseline value, the 
stress index (and consequently the virtual character state) is decremented by 1 every 3 s. If 
the stress index is zero, no further decrement is applied. From a decreasing EDA, therefore, 
we generally infer a decreasing stress level in users;  

Figure 3 shows an example of use of the EDA-only algorithm. 
 

Figure 3. An example of use of the EDA-only algorithm. 
 

This algorithm is simple to implement and does not need a baseline value measured in 
advance by recording the physiological data of players in a state of maximum relaxation, 
which is the classic approach in the psychophysiology literature. Instead, it employs the 
temporary baseline value that is continuously updated during the game session to follow the 
player’s trends of increasing and decreasing relaxation.  

Finally, it must be noted that, as in (Healey & Picard, 1998), the algorithm does not 
decompose the EDA signal into phasic and tonic components (see Section 3.2.1), since this 
operation requires filtering operations that may introduce latency in the subsequent analysis 
of the SCL component. Therefore, the EDA-only algorithm analyzes the EDA signal as a 
whole. 

  
3.3.2. Multi-sensor algorithm. 
The multi-sensor algorithm operates a data fusion of four physiological signals (EDA, 

HR, EMG of zygomaticus major, EMG of corrugator supercilii) to determine the stress index, 
following the approach proposed in (Mandryk & Atkins, 2007). Unlike the previously 
described EDA-only algorithm, which focuses on the trend of the EDA signal, the multi-
sensor algorithm focuses on the actual value of the EDA recorded by the electrodes. As in the 
EDA-only algorithm, the multi-sensor algorithm does not decompose the EDA signal into 
phasic and tonic components (see Section 3.2.1).  

The multi-sensor algorithm respectively exploits (i) EDA and HR to derive an index 
of arousal, and (ii) the activities of the two facial muscles to distinguish between positive and 
negative high-arousal affective states. It maps a negative high-arousal state into a high level 



 

 

of stress, and a positive low-arousal state into a low level of stress. The algorithm filters in 
real time the four physiological signals as described in the following: 
• EDA is filtered by applying a 5 s moving window over the signal (Mandryk & Atkins, 

2007); 
• To compute HR from BVP, we calculate the inter-beat interval (IBI) in milliseconds, i.e., 

the temporal distance between two heartbeats, by implementing a peak detection algorithm 
described in (Zong, Heldt, Moody, & Mark, 2003). Since users’ movements can easily 
corrupt the signal from the PPG sensor, the algorithm discards IBI values that can be 
labeled as motion artifacts, because they are related to HR values that are too high or too 
low. More precisely, considering the task carried out in our study, we discard IBI values 
that are lower than 350 ms and higher than 1500 ms, which represent HR values 
respectively higher than 171 bpm and lower than 40 bpm; 

• The EMG data from the corrugator supercilii and the zygomaticus major muscles is 
rectified by applying a RMS function; the rectified data is then filtered using a 1 s moving 
window to remove motion artifacts. 

The values from the four sensors are compared to a 1-min baseline recorded before 
the play session, to minimize physiological differences among participants, and then 
standardized using a t-transformation into a 0-100 range, where 50 corresponds to the mean 
value of the baseline recording. The t-values from the four physiological sensors are then 
merged into a single stress index using fuzzy logic (Zadeh, 1965) in a two-step approach that 
employs the 37 of the 111 fuzzy rules proposed by (Mandryk & Atkins, 2007) which merge: 
• HR and EDA t-values into an arousal index in the 0-100 range; 
• Zygomaticus and corrugator EMG t-values into a valence index in the 0-100 range; 
• Arousal index and valence index into the stress index in the 0-100 range. 

Once the stress index is computed, we map its values into the state of the virtual 
character as follows: (i) 0-55 range: state 1, (ii) 55-75: state 2, (iii) 75-86: state 3, (iv) 86-94: 
state 4, (v) 94-100: state 5. 

Unlike the EDA-only algorithm, this multi-sensor approach should be able to 
distinguish negative stress from positive arousal, but requires a baseline recording session to 
normalize data. 

 
3.3.3. Placebo. 
In the placebo condition, the stress index is generated without taking into account 

user’s current physiological measures. Since a completely random assignment would make 
the overall behavior of the character look implausible and unrealistic, we resorted to a 
pseudo-random approach for creating sham biofeedback. The process works as follows: (i) 
we take a physiological data recording of a previous game session, (ii) we pick at random one 
of the two previously described stress detection algorithms, (iii) we feed the pre-recorded 
physiological data into the algorithm, starting from a random second (in the 0-179 range) of 
the recording, (iv) if the sham data stream ends while the user is still playing the game, we 
restart the stream from second 0 of the recording. 

 
 
 
 
 
 
 
 
 



 

 

4. Experimental Evaluation 
The evaluation of the proposed biofeedback game followed a within-subject design, 

with stress detection technique (EDA-only, multi-sensor, placebo) as the independent 
variable. 

 
4.1. Participants 

The evaluation involved a sample of 35 participants (26 M, 9 F) recruited through 
direct contact among graduate and undergraduate students at our university and people from 
other occupations. Participants were volunteers who received no compensation. 

 
4.2. Materials 

The game was run on a PC, and displayed in full-screen mode on a 30’’, 2560 x 1600 
pixel LCD monitor. The distance between the screen and the user was about 1.5 m. The lights 
in the room used for the evaluation were turned off to prevent issues in gameplay experience 
reported in the study by Dekker and Champion (2007). We also employed a much larger 
display for the same reason.  

We recorded and processed participants’ physiological data on a second PC. To 
record participants’ physiological data, we employed four sensors, following the placement 
suggestions described in (Andreassi, 2007): 
• Two EMG sensors coupled with disposable pre-gelled electrodes, placed over the 

zygomaticus major and the corrugator supercilii muscles; 
• An EDA sensor, placed on the intermediate phalanges on the middle and ring fingers; 
• A PPG sensor, placed over the distal phalanx of the index finger.  

Physiological data was recorded at 2048 Hz with a Procomp Infinity encoder, and 
processed in real-time with the two algorithms for stress detection described in Section 3. The 
calculated stress index was sent through a LAN connection to the PC running the 
biofeedback game. We assessed the latency of the LAN connection, and the time required to 
receive the stress index by the game was about 1 ms, which is too short to be perceivable by 
participants. 

To record participants’ subjective opinions, we employed a questionnaire that 
assessed: 
• Perceived quality of the biofeedback. To assess this aspect, after trying each condition 

users rated three items (“The character’s relaxation level corresponded to mine”, “When I 
was relaxed, the character was relaxed too”, and “When my relaxation level was 
changing, the character’s relaxation level immediately changed too”) on a 7-point Likert 
scale (1 = strongly disagree, 7 = strongly agree). Participants’ ratings of the three items 
were averaged to form a reliable scale (Cronbach’s alpha = 0.72);  

• Difficulty of relaxation training. To assess this aspect, after trying each condition users 
rated three items (“I found it difficult to increase my relaxation level”, “I had to struggle a 
lot to increase my relaxation level”, “The game allowed me to easily increase my 
relaxation level”) on a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree). 
Since the first two items contained negative statements and the third item contained a 
positive statement, we reversed the score of the third item, then participants’ ratings of 
the three items were averaged to form a reliable scale (Cronbach’s alpha = 0.77).  

 
4.3. Procedure 

Participants were verbally briefed about the nature of the task, the data measured by 
the physiological sensors, and the anonymity of the collected data. They were asked to try the 
three versions of the game level described in Section 3.1. They were told that their goal was 
just to relax as much as possible, because the state and ability to focus on its work of Andrew 



 

 

was going to reflect their own relaxation state. Participants were also informed that the whole 
experiment would last for about 45 minutes. With respect to the description provided in 
Section 3.1, during the experiment we disabled the score display at the end of the level, and 
we did not mention scores to participants. 

After the introductory briefing, all participants consented to participate in the 
experiment. They were seated, the skin of their forehead and cheeks was cleaned using a pad 
of cotton wool and alcohol, and the physiological sensors described in Section 4.2 were 
applied. 

Before each condition, participants carried out a baseline session, during which they 
were asked to rest for a minute, so that physiological parameters could revert to a rest state. 
The baseline recording data was employed in the multi-sensor condition to normalize 
physiological data. After each baseline recording, participants carried out the game session in 
one of the three experimental conditions for 3 minutes. To prevent learning effects, we 
counterbalanced the order of the three conditions in such a way that every six participants, all 
six possible combinations of the three conditions were tested, and that each condition was 
tested the same number of times as first, second, and third condition during the study. During 
each game session, physiological data were recorded from all sensors. After each game 
session, participants filled the questionnaire for assessing quality of biofeedback and 
difficulty of relaxation for the game session just tried. 

After completing the three game sessions, participants were also asked for possible 
comments about each condition. Finally, all physiological sensors were removed, and 
participants were debriefed and thanked for their participation. 

 
4.4 Hypothesis 

For perceived quality of biofeedback, we hypothesized that the two conditions (EDA-
only, multi-sensor) that rely on a true affective computing approach to biofeedback would 
receive better ratings than the sham feedback condition (placebo). In addition, since the 
computation of user’s stress performed in the multi-sensor condition takes into account more 
physiological signals, we expected it to improve quality with respect to EDA-only. 

The inclusion of the difficulty of relaxation training measure was more exploratory in 
nature. On one hand, higher quality of biofeedback is likely to facilitate users in learning 
relaxation training. On the other hand, biofeedback-based relaxation training is not learned in 
a few minutes and our participants had no experience about it, so the differences in difficulty 
of relaxation training among conditions were probably likely to be small.  

 
5. Results 

We carried out a Shapiro-Wilk normality test on the questionnaire data, which 
indicated that they follow a Gaussian distribution. Then, we performed a repeated measures 
multivariate analysis of variance (MANOVA). When multiple dependent variables are 
measured as in our case,  a single MANOVA is an appropriate statistical test, because it helps 
control for the inflation of Type I error that characterizes the use of multiple ANOVAs 
(Coolican, 2009). In our case, a Pearson correlation analysis among questionnaire data 
showed moderate correlations between the two dependent variables (the higher the perceived 
quality of biofeedback, the smaller the difficulty of relaxation) for the the multi-sensor 
condition (ρ = -0.41, p < 0.05) and the EDA-only condition (ρ = -0.43, p < 0.05) .  

The MANOVA revealed a main effect of stress detection technique (Wilks’ λ = 0.86, 
F(2, 68) = 2.58, p < 0.05, ηp

2 = 0.07). We then proceeded with univariate tests with 
Greenhouse-Geisser correction and Bonferroni correction of significance level (α set at 
0.025), which showed significant differences in perceived quality of biofeedback (p < 0.01, 
ηp

2 = 0.14). Pairwise comparisons (with Bonferroni correction) among the feedback scores in 



 

 

the three conditions revealed a significant difference between the EDA-only (M = 5.00, SD = 
1.09) and the placebo (M = 4.30, SD = 1.39) conditions (p < 0.01), while no significant 
difference could be observed between the EDA-only and multi-sensor (M = 4.55, SD = 1.38) 
conditions (p = 0.06), or the multi-sensor and the placebo conditions (p = 0.94). Figure 4 
shows the mean values of the feedback score. 

 

Figure 4. Mean values of the perceived quality of the biofeedback score. Error bars indicate 
standard error of the mean. 
 

The differences (Figure 5) in the mean ratings for the difficulty of relaxation training 
with EDA-only (M = 3.14, SD = 1.35), multi-sensor (M= 3.22 , SD = 1.34) and placebo (M = 
3.32, SD = 1.25) were small and not statistically significant (p = 0.63). 

 

Figure 5. Mean values of the difficulty of relaxation training score. Error bars indicate 
standard error of the mean. 
 
 
 



 

 

6. Discussion 
For perceived quality of biofeedback, the results partially confirmed our hypothesis.  
As expected, the EDA-only technique performed significantly better than the placebo. 

Contrary to our expectations, the multi-sensor technique did not obtain better ratings with 
respect to EDA-only. This could be possibly explained by two considerations.  

First, with regards to arousal, EDA may be sufficient for the detection of cognitively-
related arousal increments (Boucsein, 2006), as discussed in Section 3.2.1, and HR might not 
be able to detect the more subtle arousal level changes induced by the biofeedback 
application, because it is an indicator for the higher arousal range (see Section 3.2.2). 

Second, the real-time detection of valence for high-arousal affective states through the 
use of facial EMG may not have contributed to improve stress detection in the case of the 
proposed game. In particular, we can consider that the employed auditory (ringing phone) 
and visual stimuli (Andrew’s body animations and facial expressions) are unlikely to 
generate positive affect in participants in any of the three conditions, because most of those 
stimuli are not pleasant. 

However, the very surprising result was that the multi-sensor technique lacked 
significant differences from the placebo condition. The EDA signal, compared to EMG and 
HR, seems thus to have been useful in producing an arousal index which was more directly 
related to the stress level of participants playing the game. In general, the fuzzy rules by 
(Mandryk & Atkins, 2007), which were originally defined to detect the level of five different 
emotions and tested during play of competitive sports video games, might not be well suited 
to the context of the present study, in which we focus on detecting stress during a relaxation 
training activity. The different way in which the EDA signal is analyzed by the two 
algorithms might also have played a role. The results seems to suggest that inferring increases 
or decreases of the arousal level from the slope of the EDA signal could lead to an higher 
accuracy in arousal detection with respect to placebo, unlike using a unique baseline value 
calculated before the 3-min gaming session, as the multi-sensor algorithm did. We can 
hypothesize that the use of a unique baseline value is not always able to correctly capture the 
trend of the player’s arousal level. Let us consider, for example, a significant increase in 
EDA (i.e., greater than 0.05 µS) after a long period during which the signal continued to 
decrease starting from the baseline (e.g., this happens when the player continuously increases 
his/her relaxation level since the start of the game). In the multi-sensor algorithm, the EDA 
increase cannot have an effect until the signal value has increased enough to exceed the 
baseline, which may require time. A similar situation occurs if a player who, after increasing 
his/her arousal level for a long time, starts relaxing. With the EDA-only algorithm, these 
EDA increases and decreases can have an immediate effect on the state of the character.  

It is interesting to note that if the experiment had focused only on comparing the two 
non-placebo conditions, it would have concluded that there are no significant differences 
between the EDA-only and the multi-sensor technique, possibly giving the impression that 
using one stress detection solution or the other would produce similar results in the 
biofeedback game. The introduction of a placebo condition in the experimental method put 
instead results under a different light. The EDA-only condition was able to feed back stress 
level to participants with significantly better accuracy than the placebo condition, while the 
multi-sensor condition was not able to do the same. Therefore, faced with the choice of which 
solution to employ in the biofeedback game, the results indicate that the EDA-only solution is 
really superior to sham feedback that mainly appeals to user’s suggestion, while the (more 
costly and complex) multi-sensor condition was not able to show this superiority. Therefore, 
only the EDA-only solution can be justified in the considered case.  

In general, our findings highlight the importance of using more thorough 
methodologies in future affective computing studies, by including placebo conditions to 



 

 

determine if the (often complex and costly) affective computing systems are actually playing 
a significant role in determining the effectiveness of the feedback. In affective computing 
studies, methodologies employing instruments and measures such as confusion matrices 
(Healey & Picard, 2005; Zhai & Barreto, 2006) or mean successful recognition (Liu et al., 
2009; Wu et al., 2010) allow researchers to assign an absolute value to the accuracy of stress 
detection. However, these procedures do not account for the placebo effect that can take 
place when the proposed emotion detection techniques are applied, for example, to 
biofeedback-based relaxation training. Including placebo conditions in the experiment can 
thus complement the currently used methods to determine the accuracy of an affective 
computing system as well as its effectiveness in specific applications. Indeed, if an affective 
computing application could not exhibit a better accuracy than a placebo condition, it 
becomes difficult to justify the usage of complex (and often costly and inconvenient) affect 
detection techniques in the application. Furthermore, if a placebo condition had been added, 
studies in the affective computing field which compared two or more systems might have 
gained more insights, especially with reference to the practical usefulness of the considered 
systems. 

The results obtained with difficulty of relaxation training display a trend similar to the 
one obtained for quality of feedback, but the differences among conditions are in this case 
very small and not statistically significant. This indicates that, as suspected, difficulty of 
relaxation training is not likely to significantly benefit from the higher quality of biofeedback 
in a few minutes of first use of biofeedback-based training. Since we kept a recording of the 
physiological signals during the three conditions, we carried out an exploratory comparison 
that confirms the users’ subjective indication. We analyzed the mean values of the tonic 
component of the EDA, extracted using the Ledalab software (Golz & Kaernbach, 2013), as 
well as the mean values of EMG and HR, recorded during the three game sessions. For all 
conditions, baseline values recorded before each condition (see Section 4.3) were subtracted 
from the physiological data recorded during the 3-min play session to account for individual 
differences. Data was not normally distributed; therefore, we performed four separate 
nonparametric analyses of variance using Friedman tests. We did not obtain statistically 
significant differences, which was partly expected as pointed out in Section 4.4.  Subjective 
difficulty as well as physiological effectiveness of training need to be studied in the context 
of a realistic relaxation training course in which participants carry out multiple sessions over 
several weeks or months, e.g., as in (Buckelew et al., 2007; Foster, 2004; Jensen et al., 2009). 
However, the correlation between perceived quality of feedback and difficulty of relaxation 
training reported in the Results section is promising. 

 
 

7. Conclusions 
This paper has proposed a novel biofeedback system for relaxation training, which 

was tested with two different stress detection algorithms (single- and multi-sensor) and with 
sham biofeedback (placebo). Results of the evaluation show that only the feedback produced 
by the (more convenient and less costly) single-sensor solution was perceived as significantly 
more accurate than the placebo condition. If only the two non-placebo conditions had been 
considered, their effectiveness would have instead appeared similar. This outcome highlights 
the importance of using more thorough methodologies in future affective computing studies, 
by including placebo conditions.  

The next phase in our research will concern the design of a longitudinal study. While 
a different quality of feedback can be noticed immediately by users as we have seen in the 
present study, a longitudinal study would allow one to assess further possible advantages of 
receiving a better feedback, e.g., in terms of easier and faster learning of relaxation training 



 

 

and/or a better outcome of the relaxation training treatment on participant’s health. To better 
test the capabilities of the multi-sensor approach, we will design new levels for the 
biofeedback game to present users with auditory and visual cues that can elicit positive 
emotions, instead of mainly focusing on stressful and negatively-valenced stimuli. This might 
allow the multi-sensor algorithm to gain an advantage over the EDA-only algorithm, because 
it could be possibly able to distinguish between affective states characterized by negative 
high arousal levels (which is typical of a stressful state) and positive high arousal levels (a 
state of excitement unrelated to stress). The ability to distinguish between these two high-
arousal states could allow the affective computing application to influence different aspects 
of the users’ affective state: in the negative high arousal case, the training activity must be 
able to reduce both arousal and the negativity of emotions; in the positive high arousal case, 
the training activity should focus on reducing the arousal, while maintaining positive 
affective states that could optimize health and well-being (Fredrickson, 2000). 
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