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Improving the Efficiency

of Viewpoint Composition
Roberto Ranon and Tommaso Urli

Abstract—In this paper, we concentrate on the problem of finding the viewpoint that best satisfies a set of visual

composition properties, often referred to as Virtual Camera or Viewpoint Composition. Previous approaches in the

literature, which are based on general optimization solvers, are limited in their practical applicability because of unsuitable

computation times and limited experimental analysis. To bring performances much closer to the needs of interactive

applications, we introduce novel ways to define visual properties, evaluate their satisfaction, and initialize the search for

optimal viewpoints, and test them in several problems under various time budgets, quantifying also, for the first time in

the domain, the importance of tuning the parameters that control the behavior of the solving process. While our solver,

as others in the literature, is based on Particle Swarm Optimization, our contributions could be applied to any stochastic

search process that solves through many viewpoint evaluations, such as the genetic algorithms employed by other papers

in the literature. The complete source code of our approach, together with the scenes and problems we have employed,

can be downloaded from https://bitbucket.org/rranon/smart-viewpoint-computation-lib.

Index Terms—Virtual Camera Control, Viewpoint Computation, Virtual Camera Composition, Viewpoint Composition.
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1 INTRODUCTION

The problem of finding an effective viewpoint

within a 3D environment is pervasive in any

3D graphics application, such as modeling, video

games, data visualization and virtual storytelling.

When the viewpoint is not controlled by the user,

an algorithm has to compute a good one according

to some goals, e.g., in third person games, showing

an unoccluded back view of the main character at
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some distance, also maintaining frame coherence.

The algorithms employed in real-world applica-

tions are typically very specific and limited in the

kind of goals they can achieve, for example not

being able to frame more than one target, or to find

suitable viewpoints in spatially complex scenarios.

In those situations, programmers are forced to re-

sort to ad-hoc camera scripting, often combined

with manual, off-line viewpoints positioning.

In the last years, some researchers have pro-

posed more general approaches, with the aim of

requiring less manual intervention from the pro-

grammer and extending the expressive potential

of automatic camera control. In this paper, we

focus on approaches where the programmer defines

camera control goals by arbitrarily combining basic
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elements used in photographic composition, e.g.

object(s) visibility, size or position in the resulting

image, and a general purpose constraint or opti-

mization solver finds the viewpoint or viewpoint

path that best satisfy them. More specifically, this

paper focuses on the basic problem of finding one

optimal viewpoint, often referred to as Virtual Cam-

era (or Viewpoint) Composition (hereinafter, VC) [1],

[2], [3], [4], [5], [6], [7].

Interesting uses of VC have been proposed in

3D virtual visits creation [8] and virtual cinematog-

raphy [9] (to automatically suggest potentially in-

teresting viewpoints in the authoring process) and

within sophisticated dynamic automatic camera

control approaches [10], [11] (where VC computes

viewpoints, e.g., that conform to cinematic con-

ventions, and path planning is used to move the

camera between them).

The approaches to VC proposed so far, although

generally able to find viewpoints in complex sit-

uations (both spatially and in the number of tar-

gets and requirements), struggle to find practical

application, for a number of reasons. First, perfor-

mances reported in the literature are in most cases

discouraging (e.g. in the order of several tenths or

even seconds to solve not-so complex problems,

or much varying in solving time). Second, papers

typically lack an experimental evaluation on dif-

ferent and not trivial situations, because they use

simple or very few experimental scenarios. Third,

most approaches rely on solvers whose behavior

is controlled by a number of parameters, and the

optimal choice of parameter values, which is often

critical, is rarely discussed and supported by exper-

imental evaluation. Fourth, source code is typically

not available, and therefore results are difficult to

reproduce and compare.

Of the above mentioned limitations, efficiency is

probably the most critical one. Being able to find

a suitable new viewpoint in interactive times, e.g.

in response to changes in the scene, would make it

much more viable to adopt a VC-based approach

in practical applications, and thus reduce the need

for ad-hoc scripting in the camera control process.

In this paper, we propose a number of improve-

ments to the state of the art, and we apply them to

a Particle Swarm Optimization (PSO) solver [12],

which has been also used by other papers in the

literature [6], [7]. However, our contributions can be

applied to any stochastic search process that finds a

solution through many viewpoint evaluations, such

as the genetic algorithms and local search methods

employed by other papers in the literature. Specif-

ically, we propose:

• a formulation of visual properties highlighting

calculations that are common when evaluating

more properties on the same object, and allow

one to reason more easily about trade-offs be-

tween accuracy and time;

• a method to evaluate a viewpoint goodness,

based on computing the screen representation

of relevant objects first, and strategies to ter-

minate earlier, when doing more computations

would not benefit search, based on a satisfac-

tion threshold;

• a computationally efficient solver initialization

strategy, not based, as most in the literature,

on computationally expensive geometric oper-

ators that prune the search space.

Perhaps more importantly, we validate our contri-

butions through a considerable experimental eval-
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uation, which involves 15 problems defined over

three scenes, and includes, for the first time in

the domain, solver parameters tuning, which sig-

nificantly increases performances and is crucial

for a fair comparison of different VC strategies.

The experimental evaluation shows that our indi-

vidual contributions are generally more efficient

than corresponding typical choices in previous

work, and that their combination results in per-

formances that are quite suited to the typical re-

quirements of interactive applications. While, for

reasons of space, the paper reports overall results

on the considered problems, the supplemental ma-

terial contains detailed information on each prob-

lem and performances on it. Also, we provide,

at https://bitbucket.org/rranon/smart-viewpoint-

computation-lib, the complete source code of our

approach and the employed problems, so that read-

ers can reproduce our results, experiment with

other problems, or make comparisons with their

own solutions.

The paper is structured as follows. Section 2

discusses related work; Section 3 presents our ap-

proach. In Section 4, we discuss the experimental

evaluation, and Section 5 concludes the paper and

outlines future work.

2 RELATED WORK

The process of computing the parameters of a

virtual camera to render an image with a desired set

of visual properties, e.g., to convey the appropriate

information about the 3D scene or, more specifi-

cally, about some key objects in it, is composed

of three main aspects: (i) how we define the de-

sired set of visual properties, (ii) how this set of

visual properties is turned into some measure of

viewpoint goodness, and (iii) how we search for a

viewpoint with a desired goodness.

In the following, we focus on approaches where

visual properties are inspired by the basic elements

used in photographic composition, such as object(s)

size or position in the resulting image, and that do

not limit the number of objects or properties that

can be considered. These approaches assume that

the geometry of the scene is known, and that its

relevant objects are properly labeled. By contrast,

other approaches, e.g., devoted to problems such

as single object examination [13] or scene under-

standing where objects of interest are not known a

priori [14], work mainly with low-level geometrical

data and define measures of viewpoint goodness

based mostly on that (e.g., see [15] for a review and

comparison of different measures of goodness). Full

3D camera control is outside of our scope, and we

refer the reader to the review of general methods

by Christie et al [16].

2.1 Visual Properties

Visual properties to control an object’s inclusion,

size, position / framing, and degree of visibility (or

occlusion) in the image, as well as orientation (some-

times called angle) with respect to the viewpoint,

are common throughout most approaches, e.g. [1],

[2], [3], [4], [5], [6]. Extensions to this core set

include relative properties between two objects [2]

(such as, object x must appear to the right of object

y), and more high-level photographic properties,

such as visual balance and rule of thirds [17], [7] that

aim at enforcing well-established aesthetic criteria.

To give precedence to a property over another

(e.g., because a priori it is not known if both can

be fulfilled), an additional numeric parameter that
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indicates the importance or weight of a property is

adopted in most approaches.

2.2 Defining and Evaluating Viewpoint Good-

ness

While some early approaches [18], [19] treated

properties as hard constraints, most approaches

so far have chosen instead to treat properties as

satisfaction functions that can have any value from

no satisfaction (0.0) to full satisfaction (1.0). The

goodness of a viewpoint is then typically defined

as the (weighted) sum of each property satisfaction

function.

When evaluating a property satisfaction, all ap-

proaches employ, for the sake of efficiency, some

form of approximation, at least for properties that

reason about the projection of objects, e.g., by

computing the screen size of an object using its

bounding sphere [5], [6] or axis-aligned bounding

box [3]. Some approaches have also tried off-screen

rendering to small resolution images to evaluate

visual properties with more accuracy, but at the

expense of computation times [7].

Occlusion properties are typically the most costly

to evaluate, as they require to consider also other

objects in the scene. Most approaches use ray casts

[3], [5], [6] to evaluate the visibility of points be-

longing to an object or, more commonly, its bound-

ing volume. Lino et al [10] process the scene to

compute a 2D map of visibility of some key objects,

but that is clearly efficient only if they do not vary

much in time. Moreover, reasoning in 2D is not

correct for all kinds of occluder. Christie et al. [20],

drawing ideas from soft shadow techniques, use

low-resolution rendering from a point (on a target

object) to evaluate its visibility in a restricted region

of space (e.g., around the current camera location).

The approach is able to combine renderings to

evaluate the visibility of multiple objects at the

same time, and to increase accuracy as time passes

by changing the points on the objects from which

renderings are performed. However, the approach

is efficient only when one needs to evaluate visibil-

ity in a limited region of space.

Using approximations introduces errors that may

negatively impact both the user-perceived good-

ness of a viewpoint, as well as the search process,

and an analysis of this issue is always understated

or omitted in the literature. Ranon et al. [21] suggest

that evaluating properties on off-screen rendered

images of sufficient resolution could be taken as an

”accurate” evaluation (perceptual issues aside), and

present a language to express most kind of prop-

erties in the literature and evaluate a viewpoint

accuracy with respect to them. The approach, how-

ever, is meant as a way to compare the accuracy

of different VC approaches, and not to evaluate

viewpoints while solving a VC problem.

Another relevant aspect is what to return when a

property actual value (e.g., the height of an object

in the image) is close, but not equal to the desired

one. Approaches that use satisfaction functions can

naturally treat the situation as partial satisfaction

(i.e., an intermediate value in the [0,1] interval),

thus allowing the search process to reason about

partially good viewpoints, and then find solutions

even in over-constrained situations [16]. Moreover,

slight deviations from a desired value might be

acceptable, as they could not be noticed by the

viewer. Various ways to model satisfaction decay

from desired values have been proposed, e.g. linear

[6] or Gaussian [7] functions, however with limited
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amount of external control and thus flexibility.

2.3 Finding Good Viewpoints

From the seminal work of Blinn [22], the research

has evolved towards the use of general approaches

for constraint-based reasoning [23] or optimization,

such as genetic reasoning [4], [24], forms of local

search [25], [26], or PSO [6], [7]. These approaches

generally are not limited in the number of target

objects, properties, or kind of scenes, and treat

the space of viewpoint parameters as continuous

(thus potentially exploring every possible solution),

in contrast to early approaches that discretize the

search space by considering only a subset of the

possible viewpoints [3], a solution that moreover

does not seem to provide efficiency advantages, as

shown by some experimental tests in [6].

A general distinction can be made between ap-

proaches that, as the one presented in this paper,

are designed to return viewpoints anywhere in the

scene, e.g. [3], [23], [6], [7], [4], [5], and approaches

that return viewpoints in a relatively small region

of space around a point (e.g., around the previous

camera position) [26], [25], [20]. The latter category

of approaches generally needs to perform much less

viewpoint evaluations, and is therefore able to re-

turn results in real-time; plus, as found viewpoints

are close to previous ones, they quite naturally

allow to move a camera in real-time. However, they

can be easily stuck in local minima (e.g. not being

able to resolve occlusions).

Approaches that can reason globally to the whole

scene, instead, are much less prone to local minima,

but their efficiency, at least from past results in

the literature, is far from real-time, unless strong

assumptions are introduced (e.g., Lino et al. [10]

assume targets and scene geometry do not change

much in time, and visibility can be correctly com-

puted in 2D). Reported computation times are gen-

erally high (up to seconds) and/or very variable

(also, in part, due to the stochastic nature of solvers)

even on quite simple scenes and VC problems. A

notable exception is [27], which uses fast algebraic

techniques to find a viewpoint featuring exact on-

screen positioning of two or three subjects. How-

ever, the approach is limited to situations where

the desired on-screen position is known and, more

importantly, does not handle occlusions.

One of the well-known issues is how to focus

search on regions of space where solutions can

be found. For example, approaches that initial-

ize search randomly throughout the whole search

space (e.g. [7], [24]) typically suffer from high vari-

ability in performances. Using a hybrid constrained

optimization approach, where some properties are

treated as geometric constraints to cut unfeasible

parts of the search space, and optimization reasons

with the remaining properties on the pruned search

space, has been proposed as a solution to increase

efficiency [3], [5], [6], [10], at the expense of los-

ing some possible solutions in the case of over-

constrained situations. However, even latest hybrid

approaches such as [6] report an average solving

time of half a second for a relatively simple VC

problem which involves visibility of three objects

on a small village scene. Moreover, the cost of cut-

ting the search space through geometric operators

can be considerable [5], [10].

Recent and promising attempts at combining

global and local reasoning for real-time camera

control avoiding the local minima problem are de-

scribed in [10], [11]. In both cases, global reasoning
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is used to find viewpoints when locally found ones,

for some reason (e.g. occlusions) are not suitable.

In general, papers in this area are quite lacking

in the experimental evaluation of their proposed

approach. Most papers demonstrate results on very

few problems or use just one scene, which is often

very simple (e.g., consisting of few more objects

than the ones mentioned by the properties, or geo-

metrically very simple). As a result, it is difficult

to estimate performances in more complex and

realistic situations. The lack of publicly available

reference problems, moreover, causes each paper

to use different scenes and VC problems, thus

making it hard to reliably compare approaches.

Comparisons of different solvers are presented in

[6], [24], [28]. More specifically, [6] shows that a

PSO solver obtains better performances than the

heuristic solver by Bares et al. [3] in three VC prob-

lems in a village scene; [24] compares a custom-

designed genetic search algorithm, octree-based

best first and depth first search, and random search,

using a single three-targets visibility problem in

four different (interior and exterior) scenes and a

set of time budgets between 15 and 250 millisec-

onds; and [28] compares a variant of the CMA-ES

approach with other algorithms to evaluate how

many different solution viewpoints they can find

in three VC problems, each set in a different scene.

However, in all these three papers (as well in any

other experimental test published in this area) the

parameters that control the behavior of solvers

(e.g., number of initial candidates) are fixed and

set to values that are not guaranteed to maximize

solver performances. As it is generally known in

the optimization field and as we experimentally

show in this paper for VC, these parameters can

heavily determine a solver efficacy in optimizing

a given problem: using unsuitable values can then

make it impossible to effectively assess a solver ca-

pabilities. Abdullah et al. [7] mention this problem

and report that, with the PSO solver adopted in the

paper, using more or less than 30 candidates was

detrimental to PSO performances: however, as we

experimentally show in Section 4, with PSO there

are also other parameters which play a significant

role.

A further, often understated issue is the variabil-

ity in computation times that most approaches re-

port when, as in many cases [3], [5], [6], [7], tests are

run until a certain satisfaction value (or a maximum

number of solver iterations) is reached. For exam-

ple, average computation times for three different

VC problems in [6] range from 150 milliseconds to

about 2 seconds. This is clearly unacceptable for

interactive applications, where typically the camera

control process, as any other activity, has to provide

results in a given time budget, which usually can-

not be in the order of seconds. A better approach

to evaluate real-world applicability would be to

measure the results a solver can provide in a given

time budget, as done in [24] and in this paper.

3 OUR APPROACH

In this Section, we describe our approach to VC.

We start by giving preliminary definitions, and then

describe how we formulate a VC problem in terms

of visual properties, and how we turn them into a

measure of viewpoint goodness. We then discuss

how we evaluate a viewpoint goodness, and how

we search for a optimal viewpoint. Our approach

features the most common kind of properties in the

literature, but introduces improvements to allow
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for a faster evaluation of viewpoint goodness and

greater efficiency of the search process.

3.1 Preliminary Definitions

In our approach, a viewpoint is defined by 8 real-

valued components: three coordinates for the po-

sition (posx, posy , posz), three coordinates for the

look-at point (lookx, looky , lookz), a roll angle to

define the horizon, and a field of view parameter

γ. We consider aspect ratio AR as fixed (by the

application or device) and thus not a parameter of

the VC problem.

Most approaches in literature (e.g., [3], [5], [6])

use a more compact viewpoint representation with

7 real values, where the orientation is fully de-

fined by three Euler angles (yaw, pitch and roll).

A smaller representation corresponds to a smaller

search space, which typically leads to better per-

formance. However, our representation has the ad-

vantage of decoupling a viewpoint position and

orientation, since - barring occlusions - the objects

that are seen depend just on the look-at point,

while, in case of Euler angles, they depend on both

position and orientation. With solvers that optimize

all viewpoint parameters at the same time, the the-

oretical advantage is that optimal values for view-

point orientation (expressed as look-at point) can be

determined almost independently from viewpoint

position. In Section 4 we will experimentally com-

pare the two alternatives.

Objects in the 3D scene mentioned in a VC prob-

lem are hereinafter called targets. Given a viewpoint

v and a target t, we indicate with tv some represen-

tation of t as seen by v. This representation could be

obtained by rendering t from v, or by projecting the

AABB of t to the viewport, with potentially ample

variations in accuracy and computational cost.

3.2 Defining VC Problems

A viewpoint specification is constituted by a list

{pi} of desired composition properties to satisfy,

i.e., the specification is the logical conjunction of

the properties. Allowing more complex expression,

e.g. using logical disjunctions, requires minimal

changes to the objective function presented later in

this Section. Each property pi is defined by a triple:

〈eval(v, args), sat,w〉

where:

• eval depends on the kind of property, and

its role is to compute an actual value from

a viewpoint v and specific arguments args:

For example, the function Framing (see Table

1) takes a viewpoint v, a target t and two

viewport points defining a rectangle Rect, and

returns the fraction of tv area inside Rect;

• sat is a function taking the value computed by

the corresponding eval function, and returning

a value in [0, 1], where 0 means no satisfaction

and 1 means full satisfaction. The sat function

defines how satisfactory an actual value com-

puted by eval is. In our approach, we define

sat through a linear spline with an arbitrary

number of control points.

• w (weight) is a real number used to specify the

relative importance of a property.

Note that typically, in the literature, the sat func-

tion is embedded into the property definition by

including a desired value as one of the property

parameters. This means that the relation between

the desired value and the actual computed value is
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eval function args Semantics (eval computes ..)

Size t,D Area, Width, or Height (the possible values of D) of tv in viewport-relative coordinates

Framing t, Rect the fraction of tv which is inside Rect

RelativePosition s, t, RL the fraction of sv which is right, left, above, or below (the possible values of RL) any point of tv

Occlusion s, t the fraction of sv which is occluded by tv . t can be equal to scene, which means every object except s, when

we want to take into account any source of occlusion

Angle t,u the angle between vector u and the vector from t to the viewpoint; u can be also defined by the keywords

front, up which respectively are t front and up vectors

TABLE 1

eval functions of properties in our VC approach. In the table, s, t are targets; Rect is a 2D rectangle in

viewport coordinates. In the third column, tv indicates some representation of target t as seen by the

viewpoint v.

fixed and cannot be changed. Our solution, while

introducing a little complexity, gives much more

flexibility in specifying exactly the meaning of sat-

isfactory.

The eval functions available in our approach are

presented in Table 1, and include the most common

ones proposed in the literature. Note that the def-

initions we propose highlight the role of tv when

reasoning about a target t and do not constrain the

way tv is computed: this will be detailed in the next

Section.

Having defined a viewpoint specification in

terms of properties, the VC problem is then to find

v that maximizes the objective function combining

the satisfaction of all properties, i.e. v satisfaction:

argmax
v∈V

∑
i

wisati(evali(v, argsi))

where V is the domain of possible viewpoints. In

our approach, this is defined by one interval of

allowed values for each viewpoint component.

3.3 Computing tv for a target t

Following [21], an accurate representation of tv can

be obtained by rendering t from v at sufficiently

large resolution (e.g., the user’s application maxi-

mum resolution, as going beyond that would not

make any practical difference) or, alternatively, by

projecting and clipping all the polygons of t in

screen space. Table 2 describes methods to compute

the eval functions defined in Table 1 using off-screen

renderings of targets, except for the Angle property,

which can be accurately evaluated geometrically.

All the described methods are based on rendering

the target(s) with some flat color, transferring the

resulting image from the GPU memory to RAM,

and then processing its pixels.

Unfortunately, rendering-based methods are

quite expensive in terms of time. For example,

Table 4 reports the time needed to evaluate one

Size or Occlusion property in one of the scenes of

our experimental evaluation, called City, obtained

by averaging 1000 property evaluations on random

viewpoints (see Section 4 for details on the scene

and our implementation). The cost for Framing and
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Property computing tv Evaluation

Size render t (with flat color c) to texture count c-colored pixels (for Area), count horizontal

(vertical) c-colored pixels span for Width (Height)

Framing as above count c-colored pixels that are inside Rect, divide by

number of c-colored pixels

RelativePosition render s, t to the same texture (with flat colors cs, ct), with

additive blending, depth test disabled

count cs pixels that are left of (or right, above, below)

cs + ct or ct colored pixels 1, divide by number of

c-colored pixels

Occlusion render s, t (s first) to the same texture (with flat colors

cs, ct), with additive blending, depth test enabled (i.e. pixels

belonging to c that are occluded will have color cs + ct)

count cs + ct-colored pixels, divide by number of cs-

colored pixels

TABLE 2

Rendering-based methods to evaluate properties in Table 1

RelativePosition properties would be similar, as they

are based on the same operations. At a resolution

of 1000 by 800 pixels, evaluating one property takes

about 0.25 seconds. Reducing the resolution (and

thus accuracy), the computational cost diminishes

but, even at a resolution of 40 by 30 pixels, it

still takes several milliseconds. As noted by other

researchers [2], while rendering and pixel counting

can be very fast, the problem here is the cost of

transferring the image from GPU to CPU memory.

Table 3 illustrates our methods of choice for faster

evaluation of properties, using bounding volumes

and geometrical reasoning. With the exception of

Occlusion, we compute tv for a target t by taking

the (oriented or axis-aligned) bounding box of t,

finding the vertices of it that are visible from v,

and projecting them, using the fast look-up table

approach proposed by Schmalstieg and Tobler [29].

The resulting 2D hull polygon is then clipped by

the viewport through a standard Cohen-Sutherland

algorithm, and finally used for calculations as spec-

ified in the third column of the table. As the result-

ing polygon is convex, a contour integral approach

can be used to quickly compute its area. Most

approaches in the literature, instead, use bounding

spheres or compute the 2D screen-space AABB of

a target AABB projection, generally poorer approx-

imations of tv than our solution.

In the case of Occlusion, we do not compute sv

and tv , but we sample a few points on the bounding

box of s: we use the fairly standard solution of

casting 9 rays from v to the center and each corner

of s bounding box, and report the fraction of them

which intersect t (or any other object in the case t

is equal to the entire scene).

Note that, while some approaches compute tv

with respect to the viewplane [6], [3], our choice

is to clip the projection of t to the viewport. This

means that properties will reason just on the part

of t which will end up in the image. In our opinion,

this choice makes it easier to express a desired

result in terms of properties, as one needs to reason

on just what will end up in the image. On the

other hand, this choice makes it harder for the

search process to distinguish between situations
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Property computing tv Evaluation

Size compute convex hull of projection of t

bounding box, clipped by viewport

compute tv Area, Width or Height by computing convex hull area, width

or height, divide by viewport area, width or height

Framing as above clip tv by Rect and compute its area, divide by tv area

RelativePosition as above return area of sv , clipped by relevant extreme coordinate of tv , divided

by area of sv

Occlusion compute 9 raycasts from v to s bound-

ing box corners and center

return fraction of rays that intersect t

TABLE 3

Geometric methods to evaluate properties in Table 1, based on bounding boxes and ray casting.

Property Mean Evaluation Cost (milliseconds)

rendering at 1000x750 rendering at 500x375 rendering at 80x60 rendering at 40x30 geom. eval. as in Table 3

Occlusion 261.68 63.10 9.61 8.96 0.1

Size 261.87 63.47 9.70 8.44 0.005

TABLE 4

Average cost to evaluate Size and Occlusion properties, through different methods, on one of the scenes

of our experimental evaluation.

where a target is totally included in the image,

and situations where it is partially included. For

example, the same value for a Size property could

be computed for a closer, partially included target,

and for the same target, but farther and totally

included, and these two situations clearly yield

different visual compositions.

In order to tackle this problem, our approach

always favors total inclusion of targets. To this pur-

pose, before evaluating a property, we check how

much its target(s) are included in the viewpoint

view volume (by checking the bounding box cor-

ners coordinates in clip space), and, after property

evaluation, we multiply the property satisfaction

by the fraction of inclusion (with 0.0 being totally

outside and 1.0 being totally inside), except for

cases when total exclusion (e.g. Size equal to zero)

is requested. In this way, compositions with partial

inclusion of targets can still be partially satisfactory,

i.e. not ruled out in the search process. The down-

side is that when one wants only a subpart of an

object to be included, it has to be a distinct object

in the scene, which the search process will try to

include completely.

As the last column of Table 4 shows, evaluating a

Size property with the proposed geometric method

has an average cost of 0.005 milliseconds, while

occlusion has a cost of 0.1 millisecond; this is

respectively quicker than the equivalent rendering-

based calculation at resolution 40x30 by four orders

of magnitude (Size) and two orders of magnitude

(Occlusion). This means that, accuracy considera-

tions aside, a search process employing rendering-

based methods is roughly expected to be slower by
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at least a couple of orders of magnitude than the

same process employing the proposed geometric

methods.

3.4 Evaluating a Viewpoint

The typical procedure for computing the satisfac-

tion of a viewpoint is to evaluate each property, and

then sum up the individual contributions. How-

ever, with many solvers one can safely interrupt a

viewpoint evaluation when it is guaranteed that a

certain satisfaction cannot be reached. For example,

with PSO, a candidate viewpoint can influence the

search process only if its satisfaction is greater than

all previous evaluations of the same candidate -

in cases when this is not true, by evaluating the

candidate satisfaction we have just wasted time.

Previous approaches (based also on other solvers

than PSO) adopted therefore a lazy evaluation strat-

egy, where properties are ordered by increasing

cost of evaluation and evaluation of a candidate

is aborted as soon as it is guaranteed that a certain

satisfaction cannot be reached (where the threshold

is dynamically established by the search process)

[3], [6], thereby saving, when possible, the evalua-

tion of costly properties (e.g., occlusions), without

any effect on the search process. We build on that

approach and extend it by:

• computing tv for each target t mentioned by

properties before actually evaluating any prop-

erty. When a target is not seen by a view-

point, the satisfaction of each property that

mention it can be safely set to zero; moreover,

as computing the same tv can be required by

more properties, its value is stored and then

just retrieved when needed; to maximize the

chance of stopping evaluation earlier, we order

targets by decreasing contribution to the objec-

tive function, i.e. by wt =
∑
wi/|Ti|, where Ti

is the set of targets for each property pi that

mentions t;

• ordering properties evaluation by decreasing

wi/costi, where costi is an estimate of the

computational cost of evaluating property pi

(e.g., as in Table 4); in this way, properties that

contribute most to the total satisfaction, and

have similar cost, are evaluated first, with a

greater chance of stopping evaluation earlier.

Our modifications to the lazy evaluation employed

in [3], [6] are still conservative, i.e. a viewpoint

evaluation is stopped only if there is a guarantee

that the required threshold cannot be reached. In

Algorithm 3.1, we describe our strategy. In the

pseudo-code, P is the array of VC properties pi,

ordered by decreasing wi/costi, T is the array of

all properties’ targets, ordered by decreasing con-

tribution to the objective function, and lazyLimit is a

satisfaction value which triggers the lazy condition:

when we evaluate that the computed satisfaction

cannot overcome lazyLimit, we stop and return −1,
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a failure flag, not considered as a satisfaction value.

Algorithm 3.1: EVALSAT(v, lazyLimit)

sat← 0

satmax←
∑

wi

for each t ∈ T

do



project t visible vertices

if all vertices outside viewport

then



for each property pi mentioning t

do

{
P ← P − pi
satmax← satmax− wi

remove each p mentioning t from P

if satmax < lazyLimit

then return (−1)

else

{
clip t projected vertices

compute tv area, and screen extents

for each p ∈ P

do



s← wi ∗ satp(evalp(v, argsp))
sat← sat+ s

satmax← satmax− s
if satmax < lazyLimit

then return (−1)
return (sat)

The algorithm is structured in two phases. First,

we compute tv for all targets. Whenever a target

is projected outside the viewport, we eliminate all

properties that mention it from P , subtract their

weights from the maximum achievable satisfaction,

and check if we have triggered the lazy condition.

In this way, all tv computations that could be shared

among properties are performed once, properties

that refer to targets outside the viewport are not

further considered, and, depending on the value

of lazyLimit, we may stop evaluation earlier. In a

second phase, we consider the remaining properties

and evaluate them one by one, each time checking

if the lazy condition has been triggered. For all

properties but Occlusion, evaluation is computation-

ally very simple, since we have already computed

tv for each target.

3.5 Solving VC problems

Our solver is based on the PSO approach [12],

with a novel strategy for initializing candidates.

PSO is a population based stochastic optimization

technique, inspired by social behavior of flocking

birds or schooling fishes. With standard PSO, the

process is initialized with a population (swarm)

of candidates (particles) and search for optimum

is performed by flying the particles through the

problem space ”following” the current best one.

In our case, we use a swarm of N 8-dimensional

particles, each one defining a viewpoint. Each par-

ticle pi is described by:

• the particle’s current position xi =

(xi1 , xi2 , . . . , xi8) (the eight values define

a viewpoint’s position, look-at point, roll

angle, field of view);

• the particle’s velocity vi = (vi1 , vi2 , . . . , vi8);

• the particle’s best visited position (as mea-

sured by the objective function EvalSat) pi =

(pi1 , pi2 , . . . , pi8), a memory of the best position

ever visited during the search, together with

the corresponding objective function value

besti.

The index of the particle that reached the global

best visited position is denoted by g, that is, g =

argmaxi=1,...,N besti.

At the beginning of the search, the particles

position and velocities are initialized as described

in the next Section. The search is performed as

an iterative process which, at step n, and for each

particle, evaluates EvalSat on its position, and then

modifies the velocity and position based on their

values at step n−1, on each particle p value (its best
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visited position), and on the position of the best

particle overall, i.e. pg, according to the following

rules (superscripts denote the iteration number):

vn
i = ωn−1vn−1

i +c1r1
(
pn−1
i − xn−1

i

)
+c2r2

(
pn−1
g − xn−1

i

)
xn
i = xn−1

i + vn
i i = 1, 2, . . . , N

Note that, according to these rules, EvalSat

can be computed for particle i setting besti as

the lazyLimit argument. The values r1 and r2 are

two uniformly distributed random numbers, whose

purpose is to maintain population diversity. The

constants c1 and c2 are called cognitive and social pa-

rameters, respectively describing a particle’s trust

in its own experience and in the best particle of the

swarm. The value ω is an inertial weight and it estab-

lishes the influence of the search history on the cur-

rent move; it linearly decreases, iteration after itera-

tion, from an maximum value (ωinit) to a minimum

one (ωend). In general, it is known that the behavior

of a PSO solver changes significantly depending on

the values of these parameters, and finding suitable

values for specific problems or classes of problems

is the topic of several research papers. Particles can

exit their domain during search: in this case, the

objective function is set to a negative value without

evaluating it.

Additionally, the PSO solver takes as input a

maximum time budget T , and a satisfaction threshold

ST ∈ [0, 1]. The process ends whenever: (i) any

particle reports a satisfaction sat > ST · satmax,

where satmax =
∑
wi is the maximum satisfaction

ever obtainable by a particle, or (ii) the time elapsed

since starting PSO is greater than the time budget.

The stopping conditions are evaluated each time a

new global optimum has been found (satisfaction

threshold), and after each particle evaluation (time

budget).

When the solver stops, the current best particle

is returned as result.

3.5.1 Initializing Particles

Standard PSO initializes the particles with random

position and velocities, since the algorithm has no

knowledge about the search space before starting

iterations. This strategy can have a negative im-

pact on solving time, because random initialization

is not guaranteed to produce particles that can

quickly guide the search process towards an opti-

mum. This problem is common to many stochastic

optimization approaches.

As we discussed in Section 2, to tackle this prob-

lem, previous approaches have considered some

kind of properties (typically, Angle and Size) as ge-

ometric operators that derive sub-regions of search

space where a property can be satisfied [6], [5], [3].

By intersecting the derived sub-regions, one can

derive a subset of search space where candidates

are initialized and search can be somehow confined,

however, with a considerable computational cost

[5].

In an effort to find a less costly approach, instead

of explicitly pruning the search space, we try to

initialize each candidate in a position where at least

one property is partially satisfied. We achieve this

through an initialization process assigning a subset

of the initial particles to each property (depending

on its weight), and trying to initialize them in

positions where the property can be better satisfied.

Then, during search, we allow our candidates to

explore all search space, and therefore do not limit a

priori our solutions in the case of over-constrained
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problems.

We have determined methods that find view-

point positions with a certain estimated satisfaction

for Size and Angle properties. For example, for a

Size property, one can roughly estimate the distance

the viewpoint v should have from the target t for

the Size of tv to be a certain value by taking the

bounding sphere of t and assuming it is centered

on screen, and then using the well-known formula

distance =
target size

target’s projection size
· 1

tan(γ/2)

where the size is that of the bounding sphere.

For any distance, a viewpoint v on the sphere

centered on t and with radius equal to the distance

will (approximately) guarantee a certain Size of tv .

Considering a budget of particles to be assigned to

a certain size property, since our sat function is a

linear spline, we treat it as a probability density

function, and use inverse transform sampling so

that more particles will be initialized around the

distances that give higher satisfaction. For an Angle

property, it is straightforward to derive a similar

procedure. The steps of the initialization process are

the following:

1) we determine two sets of particles, R (ran-

dom) and NR (non-random), such that: (i) |R|

+ |NR| = N (the total number of particles); (ii)

|R| = trunc(N * r part), where r part ∈ [0, 1]

controls the fraction of random particles we

want to use;

2) for particles in R, the dimensions correspond-

ing to the position of the viewpoint are ran-

domly initialized in the search space;

3) for particles in NR, we consider the subset PS

of properties for which we have an analytical

method to find suitable viewpoint positions

(currently, only Size and Angle). We partition

NR into |PS| subsets, where each subset is

associated to a property, and the number of

particles in the set depends on the weight of

the property (properties with greater weight

get more particles). For each subset and par-

ticle, the dimensions corresponding to the

position of the viewpoint are set according to

the strategy explained above;

4) for all particles, the dimensions correspond-

ing to the look-at point of the viewpoint are

randomly initialized inside the AABB of all

problem targets;

5) for all particles, roll angle and FOV are ran-

domly initialized in the search space.

The expected advantages with respect to purely

random initialization are the following. First, set-

ting the look-at point randomly inside the AABB

of all targets ensures that (barring occlusions) initial

candidates will frame at least some of the targets.

Second, properties such as Size or Angle are very

often used, as we typically want targets to be at

least recognizable by the user; therefore, initializ-

ing candidates in areas where such properties are

satisfied (at least to some degree) is likely much

better than random initialization. Additionally, a

percentage of particles can still be randomly ini-

tialized to promote exploration of the search space.

In Section 4, we will experimentally determine an

optimal value of r part for subdividing particles

into the R and NR subsets.

3.5.2 Implications of our viewpoint representation

With our viewpoint representation, a particle fol-

lowing the best one in the swarm is pushed to
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look towards the same look-at point of the best

particle. With a representation using Euler angles,

instead, a particle is pushed to look in the same

direction as the best particle, which is not ideal

if the two particles are far apart. This kind of

decoupling helps the look-at points to drift towards

the problem targets. However, in our case, when,

for a particle, the look-at point gets very close to the

viewpoint position, a small change in the position

itself can correspond to a large change in how

properties are satisfied. This is in theory a negative

situation, since a smooth objective space is more

favorable for solvers like PSO. However, due to

the way we initialize particles, such situations are

not likely to happen at the beginning of search;

during search, even if this might happen for a

particle, it would likely have little consequences on

the overall search process, because PSO works with

a population of candidates.

4 EXPERIMENTAL EVALUATION

In this Section, we evaluate the effectiveness of

our approach, and of its specific improvements

over prior work. More specifically, we compare:

(a) our approach, as described in this paper; (b)

our approach, using a viewpoint representation

with Euler angles (i.e., 7 components instead of 8);

(c) our approach, using traditional lazy evaluation

with properties ordered by decreasing cost instead

of the strategy described in Section 3.4; (d) our

approach, using random initialization of particles

instead of the strategy described in Section 3.5.1;

(e) a previous PSO-based approach by Burelli et al.

[6].

For each variant, we have performed a specific

parameters tuning phase to determine optimal val-

ues for the solver parameters. As described in the

previous Section, the parameters are the number

of particles (N ), the fraction of random particles to

be used in the initialization (r part), and the other

PSO parameters c1, c2, ωinit, and ωend. Hereinafter,

we use the term setup to denote some choice of

values for the solver parameters. Parameters tuning

allows us to make fair comparisons between differ-

ent solving strategies, since any particular choice of

parameters could result in poor performances for

some strategy. For reasons of space and interest,

we report full results about the parameters tuning

phase only for our approach with all the proposed

improvements.

4.1 Experimental setup

The approach described in this paper has been

implemented as a C++ library which can interface

with various rendering engines. The library uses

the well-known Bullet physics engine for ray cast-

ing and thus occlusion assessment. As such, the

entire scene is required to be processed by Bullet to

build a so-called collision world. This can be done

during scene loading and updates to the collision

world - when there are changes to the scene - have

a minimal cost. Bullet can use various shapes for

ray-casting: to maximize accuracy at the expense

of performance, we employed the original scene

meshes, instead of simpler bounding volumes. In

the experimental evaluation, our library is inter-

faced with the Ogre open-source rendering engine.

All the experiments were run on an Apple MacPro

equipped with two 2.8GHz Xeon processors, and

2 GBytes of RAM; however only a single core was

dedicated to each solver run.
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Scene Triangles Objects Scene AABB

city 474083 324 300 x 100 x 300 (vol: 9 x 106)

house 324182 50 120 x 23 x 100 (vol: 276 x 103)

rooms 110474 240 13.9 x 3.0 x 21.8 (vol: 909.06)

TABLE 5

Complexity measures about the tested scenes.

4.1.1 Scenes and VC problems

We have employed three scenes, shown in Figure 1,

respectively modeling a part of a city (city), a large

house with several rooms and its exterior surround-

ings (house), and a building floor with 8 rooms,

a corridor, and some humanoid characters (rooms).

They differ by size (both in terms of polygons and

scene volume, see Table 5), spatial layout, (all with

several objects and potential occluders) and are

meant to cover exterior and interior settings.

Over these scenes, we defined 15 VC problems

to cover various typical situations, varying in the

number of targets and properties. The simplest

problem requires to frame one target at a specific

size and angle, with no occluded parts (3 proper-

ties); more complex ones involve multiple targets

(up to 4) with various desired sizes, angles, levels

of occlusion and with additional framing or relative

positioning requirements (the most complex prob-

lem involving properties on 4 different targets).

For space reasons, problems and scenes are fully

described in the paper supplemental material.

For all problems, we set a satisfaction threshold

of 1.0 (i.e., stop only if a perfectly good solution is

found). Out of the 15 problems, 7 were purposely

built to be not satisfiable, i.e. it is not possible to

find a viewpoint yielding full satisfaction, meaning

that the search process will use all available time.

Since in real applications one cannot always be sure

that a VC problem will be satisfiable, it is important

to evaluate the behavior of a VC approach also in

these situations.

In every VC problem, the domain of possible

viewpoints, i.e. the solver’s search space, was set

up as follows: position and look-at point ranges to

the AABB of the scene (reported in table 5), roll

angle set to zero (which constrains the solver to

provide shots aligned with the natural horizon) and

fixed field of view. The last two requirements are

typical in interactive 3D applications, and practi-

cally remove 2 out of 8 dimensions from the search

process; the position and look-at point domains,

instead, are purposely set to a worst case, in which

we don’t give the solver any suggestion on where

the solution viewpoint could be located in the

scene. Finally, we used AABBs to compute targets

properties.

Given that PSO is a randomized algorithm, we

solved each problem 20 times to provide a more

reliable estimate of the measured statistics. For each

run, we logged the satisfaction of the computed

viewpoint, the triggered PSO stopping condition,

and the number of performed viewpoint evalua-

tions.

4.1.2 Time budgets

To cover a range of 3D applications with different

time constraints, we identified 6 time budgets (here-

inafter, denoted by T ): 5, 10, 20, 40, 100, and 200

milliseconds. For instance, a time budget of 5-20 ms

allows one, roughly, to compute a new viewpoint

for each frame, while a time budget between 40 and

200 ms could be suitable when a new viewpoint

has to be computed from every few frames to a
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Fig. 1. Scenes used in the experimental evaluation: from left to right, city, house, and rooms.

few times per second.

4.1.3 Parameters Tuning

The approach we use for finding good solver pa-

rameter values is a variation of the popular param-

eters tuning algorithm F-Race [30], which is based

on the Friedman rank sum test. F-Race starts with

the so-called full-factorial, i.e. the Cartesian product

of all the possible parameters domains and, at each

iteration, tries each setup against a single instance

(in our case, a (problem, repetition) pair). After each

iteration, the setups are ranked from the worst

(high rank) to the best (low rank), and a Friedman

post-hoc analysis is used to prune the setups that

are inferior with statistical significance. The process

stops when there are no more instances or one

setup is left. Since our set of instances is not that

large, we decided to apply the Friedman rank sum

test directly on the whole set of experiments (the

full-factorial against all instances), to obtain a more

reliable parameter optimization process. Therefore,

for each instance, the setups are ranked from best to

worst satisfaction, then the rankings for each setup

are summed up to derive a measure of how good

the setup is across the set of problems.

To generate the full-factorial, one must first de-

cide how to sample the parameters space. By look-

ing at PSO-related literature and by running a

preliminary set of experiments to identify suitable

parameters ranges, we derived the possible values

for each parameter shown in Table 6. These set-

tings yield a full-factorial of 18720 setups, which,

considering the 15 VC problems and 20 runs for

each, translates to 5148000 runs per time budget,

for a total of about 33 million runs of PSO for each

tested solver variant.

4.2 Parameters Tuning Outcome

For each time budget, the Friedman test found a

significant effect (α = 0.05) of parameters setup

on the computed satisfaction. Table 7 illustrates the

main findings of the Friedman post-hoc analysis,

per time budget, reporting (i) the number of win-

ning setups, i.e. with significantly lower ranking

than the others (i.e., higher satisfaction across the

whole set of problems) and with no statistically

significant differences between them; (ii) the best

setup; (iii) parameter values used in the winning

setups; (iv) median number of viewpoint evalu-

ations performed, divided into full (i.e. when all

problem properties were evaluated) and partial (i.e.

when lazyLimit was hit during viewpoint evalua-
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Name Meaning Values

N number of particles in PSO [20, 30, 40, 60, 80, 100, 130, 160, 200, 240, 290, 340, 380]

r part fraction of randomly initialized particles [0.0, 0.33, 0.66, 1.0]

c1 PSO cognitive parameter [0.0, 0.5, 1.0, 1.5, 2.0, 2.5]

c2 PSO social parameter [0.5, 1.0, 1.5, 2.0, 2.5]

ωinit PSO initial inertia weight [0.5, 1.0, 1.5, 2.0]

ωend PSO final inertia weight [0.0, 0.5, 1.0]

TABLE 6

Possible solver parameters values in the experimental evaluation.

tion). Overall, the winning configurations are about

0.008% of the full-factorial.

While the information reported in Table 7 is, of

course, only guaranteed to be valid for the prob-

lems we tested, the diversity of scenes and prob-

lems in our experimental evaluation should make

winning setups quite robust on other problems and

scenes.

The number of particles in the winning setups

(third column of Table 7) is towards low values in

the considered range for T = 5 (up to 30 particles),

T = 10 (up to 40 particles), and T = 20, 40 (up

to 60 particles). As T increases, using any number

of particles becomes effective; note, however, that

the number of particles of the single best config-

uration for longest T s is significantly lower than

the maximum value of the allowed range, namely

130 for T = 100 and 200 for T = 200. Also, it is

interesting to observe that, while we expected low-

particles setups to be more successful on the shorter

time budgets (where there is no time to handle a

higher number of particles), winning setups with

low number of particles are present also for longer

time budgets.

Winning setups fully exploit our initialization

strategy on shorter time budgets: all winning setups

for T = 5 use rpart = 0 (i.e., all particles are initial-

ized in a non-random fashion), while, for T = 10

and T = 20, it is also effective to randomly initialize

up to one third of the particles, and up to two

thirds for T = 40 and T = 100. For T = 200, there

are winning setups that initialize randomly all the

particles, probably trading initial higher satisfaction

for a wider exploration of search space.

The social parameter c2 is greater or equal to

1 for the winning configurations on most time

budgets (except T = 100). There are no restrictions

to the cognitive parameter c1, which suggests that

it has no particular influence on performances. The

inertia weight parameters’ values play an effect for

T ≥ 10 milliseconds: the effective range for ωend

is [0.0, 0.5], while for ωinit values smaller or equal

than 1.0 are preferable.

4.3 Performances Results

Figure 2 presents various box plots that show the

distribution of normalized satisfaction values of

the found viewpoints in the various time bud-

gets, obtained by: our approach, with parameters

tuned (violet color); our approach, before parame-

ters tuning, i.e. using all parameter values in Table

6 (green color); our approach, using a viewpoint
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T (ms) How Best Restriction on parameters values Median evaluations

many (N, r part, c1, c2, ωinit, ωend) full partial

5 102 20, 0, 2, 1.5, 1.5, 0 N ≤ 30, rpart = 0, c2 ≥ 1, ωend ≤ 0.5 60 13

10 167 30, 0, 2.5, 1.5, 0.5, 0 N ≤ 40, rpart ≤ 0.33, c2 ≥ 1, ωend ≤ 0.5 108 43

20 117 30, 0, 2, 2, 0.5, 0 N ≤ 60, rpart ≤ 0.33, c2 ≥ 1, ωinit ≤ 1.5, ωend ≤ 0.5 176 135

40 144 30, 0, 1.5, 2, 0.5, 0.5 N ≤ 60, rpart ≤ 0.66, c2 ≥ 1, ωinit ≤ 1, ωend ≤ 0.5 373 294

100 173 130, 0, 2, 2, 0.5, 0 rpart ≤ 0.66, ωinit ≤ 1, ωend ≤ 0.5 707 625

200 218 200, 0, 1.5, 2.5, 0.5, 0.5 c2 ≥ 1, ωinit ≤ 1, ωend ≤ 0.5 1204 1206

TABLE 7

Winning (statistically equivalently good) setups found by Friedman post-hoc analysis, per time budget.

representation with Euler angles, with parameters

tuned (cyan color); our approach, using traditional

lazy evaluation, with parameters tuned (blue color,

labeled Non-smart evaluation in the figure); our

approach, using random initialization of particles,

with parameters tuned (yellow color); the PSO-

based approach described in [6] (red color). Our

supplementary material shows similar plots for

each problem and scene. Note that the aim of

tuning is to find setups that work better across

all the problems. However, there is no guarantee

(and typically it is not the case) that the winning

configurations will work always better on every

problem, and some variants might work better in

some problem than the one that is better in general.

To compute normalized satisfaction, we divided

the optimal viewpoint satisfaction by the highest

one reachable in the problem at hand. For satisfiable

problems, this is equal to the sum of the weights

of the properties; for unsatisfiable problems, it was

set to the highest satisfaction we could obtain by

solving the problem 1000 times with T = 500

milliseconds. Note also that, for each problem and

configuration, the data below the 5th percentile and

above the 95th have been winsorized, in order to

reduce the effect of spurious outliers.

It is important to point out that, since the nor-

malized satisfaction is in the [0.0, 1.0] range, small

differences in the order of tenths can, for problems

with several properties, result in one property being

or not satisfied at all, with a noticeable visual

difference in the final result. To make an example,

figure 3 displays three different solutions to the

same VC problem in the rooms scene, respectively

obtained with T = 10, T = 40 and T = 200.

The problem consists in framing three characters,

such as the farthest one in all screenshots is seen

from the front and with an eye level angle shot,

unoccluded for at least 80%, and with height equal

to 60% of the frame height; the other two should

be unoccluded, with height equal to 60% of the

frame height, and with an eye level or slightly high

shot angle. Moreover, Occlusion properties have a

double weight than others. The solutions we have

displayed in Figure 3 are close to the median sat-

isfaction we could obtain in the specific problem

(which is unsatisfiable; the maximum satisfaction

we could reach is 0.90 with T = 500). As we

can see, with T = 10, the found viewpoint (with

normalized satisfaction equal to 0.71) is not able
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Fig. 2. Distribution of normalized satisfaction obtained in all problems for each tested variant.

to entirely frame the two closer characters (with

the closest less than half framed). With T = 40,

the found viewpoint (with normalized satisfaction

equal to 0.83) better frames the three characters,

but the farthest one is too occluded; With T = 200,

the found viewpoint (with normalized satisfaction

equal to 0.92) is finally able to frame all three char-

acters, with occlusions that are minimally beyond

the requirements.

4.3.1 Parameters tuning effect

How much does our approach gain by choosing a

winning setup, instead of a random one in the full

factorial? The answer is in the difference between

the green (our approach, parameters untuned) and

the violet (our approach, parameters tuned) box

plots in Figure 2. By looking at them, it is clear

that parameters tuning increases all the quartiles for

every T . Also, the interquantile range, a measure

of variance, is always smaller for winning setups,

suggesting a more robust behavior. An interesting

sweet spot is at T = 40 milliseconds, where the

median satisfaction is very close to 1.0 despite

the relatively short time budget. Interesting results,

however, can be obtained also at T = 20, where

the median satisfaction is about 0.98. Note that

the green box plot includes data from the full

factorial, i.e. all considered combinations of pa-

rameters, including winning ones, meaning that an

unfortunate choice of parameters (e.g. choosing 100

particles with T ≤ 40) could cause much worse

performances than those shown in the box plot.

The statistical significance of this result is implied

by the nature of the tuning process (the Friedman

test).

4.3.2 Initialization Strategy

We isolated the experiments where rpart = 1 (i.e.,

random initialization of all particles), and per-

formed parameter tuning to derive the winning

setups in this particular case. The yellow (random

initialization, parameters tuned) and violet (our

approach, parameters tuned) box plots in Figure 2

show the advantage of our initialization strategy

throughout all the time budgets. This was con-

firmed by a paired one-sided Wilcoxon’s signed-
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Fig. 3. Three solutions to the same problem with different time budgets: from left to right, 10, 40 and 200

milliseconds.

rank test, with p ≤ 0.05 for all time budgets.

Note that random initialization, in our tests, was

not entirely random, as the look at point was still

initialized in the AABB of the targets: without this,

its results would have been considerably worse.

4.3.3 Evaluation Strategy

Comparing the performances of our approach with

the version of it that uses a standard viewpoint lazy

evaluation approach (both after parameter tuning:

respectively, violet and blue box plots), we can

see that in all time budgets, the quartiles for our

approach are better. With more than T = 100,

the two variants get closer in terms of satisfaction,

however the first quartile and minimum for our

approach is always better.

We ran a paired one-sided Wilcoxon’s signed-

rank test over the two distributions to assess the

statistical significance of this result, which was

confirmed with p ≤ 0.05 for all time budgets.

4.3.4 Viewpoint Representation

The advantage of our 8-values viewpoint represen-

tation over a 7-values one using Euler angles can be

seen by comparing the cyan (Euler variant) and vio-

let plots (look-at variant) in Figure 2. From the plot

it is clear that the 8-values representation is always

slightly better. The Wilcoxon’s test confirms that the

result is statistically significant with p ≤ 0.05 for all

time budgets.

4.3.5 Comparison with Burelli et al. [6]

The PSO-based approach described in [6] is an

hybrid constraint/optimization approach which, as

discussed in Sections 2 and 3.5.1, uses geometric

operators to derive a promising subset of search

space where particles are confined. Moreover, the

approach by Burelli et al. uses Euler angles to

represent orientation, computes the screen repre-

sentation using bounding spheres, and the same

occlusion evaluation mechanism as the one de-

scribed in this paper (for a fair comparison, both

approaches used in the tests the same Bullet library

and collision world). We slightly adapted our prob-

lems to Burelli et al. properties definition, so that

both approaches could reach, with sufficient time

at disposal, very close satisfaction values.

As one can see by looking at the red box plots,

the approach by Burelli et al. is largely ineffective

for T = 5, 10, 20, because its particles initialization

mechanism takes almost the whole time budget,
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with the result that PSO cannot perform enough

iterations to find good viewpoints. With longer time

budgets, the approach by Burelli et al. gets closer to

our approach, but remains significantly inferior, as

confirmed by the Wilcoxon’s signed-rank test with

p ≤ 0.05 for all time budgets.

5 DISCUSSION AND CONCLUSIONS

While the lack of reference problems still stands

as common issue to all papers in this field that

somehow limits the generality of our results, the

ample experimental activity described in this paper

allows one to draw some interesting conclusions

and directions for future work.

First, as it is generally known in the field of op-

timization but was never quantified in VC papers,

solver parameters tuning is crucial to performances,

as it allows for significantly better results (both in

terms of numerical satisfaction, and visually). A

consequence is that, when testing different solvers,

parameters tuning is necessary for a fair compari-

son. Of course, tuning on a set of problems does

not guarantee that the derived parameters will

be optimal also on other problems: however, in

our case, the fact that the set of parameters we

found could improve performances on each of the

15 problems (which differed in scene, properties,

and number of targets) make us quite confident

on their robustness to other situations. Plus, we

found that some winning setups work well on

almost all the range of considered time budgets.

On the other hand, parameters tuning is a del-

icate operation as any change in the solver or

viewpoint evaluation procedure (e.g., a less costly

way to evaluate occlusions), or even in the specific

machine computing capabilities, would probably

entail a different set of winning setups. Moreover,

considering the full factorial of setups makes pa-

rameters tuning a very time-consuming activity

which combinatorially explodes as problems are

added. Therefore, a direction for future work is to

investigate quicker ways to derive optimal solver

parameters. One possibility is to adopt the F-Race

methodology of pruning inferior setups after each

problem is considered. A more interesting direction

would be to further investigate our experimental

data (and possibly gather more) to see if there is a

relation between a machine computing capabilities

(in terms of viewpoint satisfaction evaluation) and

a target time budget, with suitable values of solver

parameters.

Our experimental evaluation shows also that

proper candidates initialization is fundamental to

find viewpoints as the allowed time decreases, and

that a ”soft” strategy like ours, where we initialize

candidates by considering one property at a time

and do not prune search space, is more effective

in time-constrained situations than other papers’

solution of cutting search space through geometric

operators, as the latter operation cost can substan-

tially hinder search (in our tests, with time budgets

equal or less to 40 milliseconds).

Our way of formalizing visual properties has two

benefits. First, it highlights computations that are

common between properties. This has allowed us

to define a viewpoint evaluation strategy which

was demonstrated to be experimentally better than

traditional lazy evaluation in our tests. Second, our

definition explicitly decouples the property seman-

tic from the kind of abstractions that are used in

computing a property value, which could be based

on geometric calculations or off-screen rendering.
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In particular, the rendering-based method, while

not nearly adequately efficient for solving problems

(at least for interactive applications), allows one

to evaluate the accuracy of solutions found with

faster, more approximate methods, which is another

aspect in evaluating a VC approach. A detailed

discussion on accuracy is beyond the scope of this

paper, also because deviations from pixel-accurate

measures do not take into account perceptual and

more high level issues, such as recognizability of

objects. Coming up with property evaluation meth-

ods that are cheap while not penalizing accuracy

too much is another direction to pursue for making

VC approaches more effective. For example, occlu-

sion evaluations (which accounted for about 70% of

the search time in our tests), could be improved by

determining, given the size of occluders, the ideal

number of ray casts in specific scenes.

Finally, by making our source code and prob-

lems publicly available, we hope to provide a step

towards the construction of a VC benchmark for

the evaluation and comparison of approaches, and

ultimately lead to the adoption of more sophis-

ticated camera control approaches in real world

applications.
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