Eurographics Workshop on Intelligent Cinematography and Editing (2015)

W. Bares, M. Christie, and R. Ronfard (Editors)

Visibility-Aware Framing for 3D Modelers

Roberto Ranon! and Marc Christie?

THCI Lab, Department of Math and Computer Science, University of Udine, Italy
2IRISA/INRIA, University of Rennes I, France

Abstract

Modelling and editing entire 3D scenes is a fairly complex task. The process generally comprises many individual
operations such as selecting a target object, and iterating over changes in the view and changes of the object’s
properties such as location, shape, or material. To assist the stage of viewing the selected target, 3D modellers
propose some automated framing techniques. Most have in common the ability to translate the camera so that the
target is framed in the center of the viewport and has a given size on the screen. However, the visibility of the
target is never taken into account, thereby leaving the task of selecting an unoccluded view to the user, a process
that shows to be time-consuming in cluttered environments. In this paper, we propose to address this issue by first
analyzing the requirements for an automated framing technique with a central focus on visibility. We then propose
an automated framing technique that relies on particle swarm optimization, and implement it inside Unity 4 Editor.
Early evaluations demonstrate the benefits of the technique over the corresponding standard Unity function, and
trigger interesting perspectives in improving a simple yet mandatory feature of any 3D modelling tool.

1. Introduction

A repetitive task encountered by 3D content creators is the
selection and framing of objects on which different manip-
ulations are performed (such as translations, rotations, mesh
editing, material editing). To ease the process and prepare
the manipulation tasks, most 3D modeling packages (like
3DS Max, Maya) and 3D game editors (like Unreal Engine
or Unity) offer a command to frame a selected object, i.e.
move the camera so as to offer a centered view of the object.

Typically, the command is implemented by a viewport
camera transformation composed purely by a translation,
which (i) puts the selected object(s) (more precisely, its
pivot) at the center of the current viewport, and (ii) sets the
viewport camera at some distance from the object, so that it
is entirely contained in the viewport.

The implementation of this functionality in most tools
however does to account for the visibility of the selected
targets. We have examined how two major modelling soft-
ware, namely 3D Studio Max and Maya, and two major
game/scene editors, namely Unity 4 and Unreal 4, imple-
ment the above described feature. With some minor dif-
ferences, all programs implement the feature as described
above, and suffer from this same issue. As a consequence,
especially in complex scenes, it is common that the selected

(© The Eurographics Association 2015.

object(s) are not visible at all. The computed view is there-
fore unadapted to perform the intended manipulations, and
the user needs to manually move the camera through clas-
sical viewpoint manipulators (translation, rotation or com-
positions such as arcball) until a suitable view is reached.
This leads to losing some time and effort. While there are
straightforward ways of handling occlusion, such as hiding
the geometry of the occluders, or using wireframe represen-
tations, these generally prevent the user from performing the
intended manipulation tasks on the selected object (e.g., pre-
cisely placing an object on top of another one, changing the
color/material to mimic its environment).

While one could state that each of these manual changes
on the camera do not require a significant time or effort,
these tasks are repeated many times. The benefit of replacing
this default feature by an automated visibility-aware view-
point computation technique is therefore appealing, as also
noted by Phillips et al. [PBG92], who proposed an hemicube
approach to derive regions around an object that guaran-
tee visibility and where the viewport camera can be moved.
However, their approach works only for single objects, and
more importantly does not work in closed scenes, i.e. those
situations where occlusions are more problematic.

We propose an alternative strategy, based on automat-

Roberto Ranon & Marc Christie / Visibility-Aware Framing for 3D Modelers

ically computing a view that, besides respecting the two
above goals, takes also into account occlusion, and then per-
form a combined translation and rotation of the viewport
camera to frame the selected object (or even multiple se-
lected objects) such that primarily occlusion, and then cam-
era rotation, are minimized. The process is based on an ef-
ficient viewpoint optimization process that relies on particle
swarm optimization [EK95]. Our approach can also handle
multiple objects, and is not limited by the spatial configura-
tion of the scene. We describe how we have implemented the
feature in Unity, and experimentally demonstrate its benefits
over the corresponding Unity-provided framing function.

While an extensive experimental evaluation with users
has not been performed yet, informal feedback from regular
Unity users has been generally positive, and has also pro-
vided interesting directions for future work.

The paper is structured as follows. In Section 2, we de-
scribe in detail the motivations and state the requirements.
In Section 3 we present our approach, and display different
examples. In Section 4 we experimentally compare our ap-
proach with the corresponding standard Unity functionality.
Finally, in Section 5, we discuss our results, and outline di-
rections for future work.

2. Motivations

In this Section, we motivate the need for our approach by
using an example scene, shown in Figure la, to demon-
strate how the framing command works. The viewport cam-
era is initially positioned and oriented as shown in Figure 1b,
where the bottom image is the view from the viewport cam-
era. The top image in Figure 1b shows also two objects that
we will consider: a computer monitor, which is positioned
to the right of the camera and in the same room, and a plant,
which is positioned in an adjacent room.

In Unity 4 Editor, after selecting one or more objects, ei-
ther in one of the visible viewports or by choosing it from a
list of objects, a user can invoke the frame selected command
to frame the selection. In Figure 2 we show the effect of the
command after selecting, respectively, the computer moni-
tor or the plant. In the case of the computer monitor (see the
two top images in Figure 2), the result is a viewport where
the selected object is fully visible. In the case of the plant,
(see the two bottom images in Figure 2), the result is a view-
port where the selected object is not visible at all, since there
is a wall between it and the viewport camera. Since the plant
is right behind the wall, there is no way to make it visibile by
purely translating the viewport camera. In this last case, only
the plan transform gizmo (i.e. the axes in the figure) provide
the user with a hint that the object is somewhere behind the
wall. In Unity, the transition between the old and new view-
port cameras is implemented through a smooth animation:
in this way, the user can see how he is moving through the
scene, and maintain spatial coherence and thus orientation.

We reviewed this automated framing technique for tools
such as 3DS Max Studio, Maya and Unreal game engine.
All follow the same idea, with the minor differences that are
presented in Table 1.

From this initial example, as well as Table 1 we can draw
a number of requirements for a better framing technique:

1. visibility: it represents the central requirement to improve
any automated framing technique. Computing the visibil-
ity of a target in a 3D modeler can be done in a cost-
effective way by using ray-casting, which is usually ac-
cessible to scripts or plug-ins. However selecting a view-
point that ensures a given visibility shows to be far more
complex. There are several approaches in the literature,
with [CONOS8] discussing the problem in detail and pre-
senting the state of the art up to year 2007. More recent
approaches can be broadly divided into two categories:
those that search for camera path that ensure the visibility
of targets (e.g., [CNO12,0STG09]), and those that aim at
computing a viewpoint anywhere that ensure that one or
multiple targets are visible (e.g., [RU14,BY10]).

2. size: given that the selection stage precedes a manipula-
tion stage, it appears essential to display the selected ob-
ject in relation to it’s environment, therefore at a given
size. For example, standard deviation for size of selected
targets, with Unity’s framing tool is 6% of the screen size
+[—2,2], which provides a clear enough view on the tar-
get and ensures establishing the object in relation with it’s
background. The on-screen size is, in an obvious way, re-
lated to the task to be performed. In Unity, most tasks are
related to displacements, rotations or property editing (in
contrast with mesh-editing). General purpose modelling
tools provide larger views on selected targets. In fine, the
key is to provide means for an automated tool to adapt
size to the task.

3. spatial cognition: establishing the spatial relation be-
tween the previous location, and the one close to the se-
lected target is of prime importance. While linear cam-
era motions proposed in most tools maintain this relation
(given the simplicity of the path), more evolved move-
ments that would require moving around the target to pro-
vide an unoccluded view may fail to establish or preserve
the understanding of this spatial relation. Therefore, if
such rotations are necessary, means should be provided
to minimize the change in camera angle.

3. Our approach

We propose to substitute the framing mechanism described
in the previous Section by a more sophisticated approach,
called visibility-aware framing, which aims at computing a
new viewport camera that:

(a) visualises the selected object the center of the viewport,
but is allowed to change position and rotation with respect
to the starting viewport camera;

(© The Eurographics Association 2015.

Roberto Ranon & Marc Christie / Visibility-Aware Framing for 3D Modelers

(a) Our example scene (b) Starting camera, and example objects

Figure 1: Our example scene represents a building floor with a corridor and nine offices. Offices contain furniture, such as chairs,
computers, desks. On the top right image, we see the initial viewport camera position and orientation, and the two objects we
are considering (depicted in cyan, with local coordinate axes): a computer monitor, and a plant. On the bottom right figure, we
see the starting viewport view from the camera. Screenshots are taken from the Unity Editor.

(a) Viewport camera position and orientation after fram-
ing the monitor

i

(c) Viewport camera position and orientation after fram- (d) Viewport after framing the plant

ing the plant

Figure 2: Results of using Unity 4 Frame selected command on the monitor (images a and b) and on the plant (images ¢ and d),
each starting from the initial camera position illustrated in Figure 1a

(© The Eurographics Association 2015.

Roberto Ranon & Marc Christie / Visibility-Aware Framing for 3D Modelers

Software

Command

Behaviour

3D Studio Max

Maya

Unity 4 Editor

Unreal 4 Editor

zoom extents selected
(zoom extents all)
Frame Selection

Frame Selected

Focus selected

translates the viewport camera (all viewport cameras) such that the selected object (or the
selected objects) is framed at the center and entirely contained in the viewport, without taking
into account visibility. The transition between the starting and computed camera is immediate.
translates the viewport camera such that the selected object (or the selected objects) is framed
at the center and entirely contained in the viewport, without taking into account visibility. The
transition between the starting and computed camera is immediate.

translates the viewport camera such that the selected object (or the selected objects) is framed
at the center and entirely contained in the viewport, without taking into account visibility. The
transition between the starting and computed camera is performed through an animation.
translates the viewport camera such that the selected object (or the selected objects) is framed
at the center and contained in the viewport at least in one dimension, without taking into
account visibility. However, the contour of the object is rendered on top of the scene, so that
even with occlusion the viewer can limitedly understand where the object is and its shape.The
transition between the starting and computed camera is performed through an animation.

Table 1: Automatic object framing functionalities in popular 3D modellers and editors.

(b) visualises the selected object with less possible occlusion
by other objects in the scene;

(c) visualises the selected object entirely contained in the
viewport, and occupying an area around 6% of the view-
port;

(d) minimises rotation with respect to the current viewport
camera.

In the case of multiple selected objects, the midpoint of all
their bounding box centers will be centered in the viewport,
and the required area of each projected object will decrease
according to how many objects are selected, while the other
requirements stay the same. Hereinafter, we will, for sim-
plicity, consider the case of one single selected object.

The possibility of changing rotation with respect to the
starting viewport camera is fundamental to guarantee visi-
bility, as shown in the example in the previous Section. The
second requirement introduces visibility enforcement. The
third requirement constrains the size of the projected object:
the 6% value was derived to mimic Unity behaviour. In this
way, the user will see some context around the object, under-
stand its location and possibly perform limited translations /
rotations / scalings without having to change the viewport
camera. The reason for the last requirement, i.e. to minimise
camera rotations when transitioning from the current view-
port camera to the new one, is to reduce the time needed for a
user to regain spatial orientation and awareness in the scene
after the viewport camera transition.

To compute the viewport camera that frames an object
in the scene as specified above, we employ the Viewpoint
Computation library described in [RU14]. This approach is
able to compute, in a given amount of time, the virtual cam-
era that best satisfies a list of visual properties. The visual
properties can express desired values of the size (area, width
or height), visibility, camera angle and on-screen position
for any choice of objects in a 3D scene. From an input list
of visual properties, the library first builds a function that
returns a numeric value indicating to what extent a given
virtual camera satisfies the properties. Then, a solver based

on Particle Swarm Optimisation [EK95] iteratively searches
the 3D scene for the virtual camera that maximises the sat-
isfaction function. In principle, the library works with any
type of scene or object and does not require any prepro-
cessing of the scene, and relies on the rendering engine to
obtain information about the position and size of the bound-
ing volumes of objects and to perform visibility queries, e.g.
through ray casting. Most, if not all 3D modelling pack-
ages and editors, provide these information through a plu-
gin API or internal scripting language. We refer the reader
to [RU14] for a detailed explanation of the viewpoint com-
putation approach. C++ source code of the library is avail-
able at http://bit.ly/1wdBOqq. In the following, we will de-
scribe in more detail the features of the library that are rele-
vant for this paper.

In the library, a virtual camera is defined by 8 real-valued
components: three coordinates for the position (posx, posy,
posz), three coordinates for the look-at point (lookyx, looky,
lookz), a roll angle to define the horizon, and a FOV param-
eter. The available visual properties are defined in Table 3.
The satisfaction of each property can be defined by a user-
provided linear spline with an arbitrary number of points,
where the x values are in the domain of the specific prop-
erty, and y values, i.e., satisfaction, are defined in the [0,1]
interval. The satisfaction of a virtual camera is then defined
as a weighted sum of each individual property satisfaction
function, where weights are user-provided real numbers that
encode a property importance with respect to the others. The
search space used by the solver can be defined by an axis-
aligned bounding box for the camera position, another one
for the look-at point, and two intervals of real values, one for
the camera roll, and one for the camera FOV.

Going back to our problem, requirement (a) is imple-
mented by setting the search space for the look-at-point to
the center of the selected object, and the search space for
the camera position, to a bounding box which is centered on
the selected object, and whose size is double the size of the
scene. Additionally, we block the roll angle to zero to avoid

(© The Eurographics Association 2015.

Roberto Ranon & Marc Christie / Visibility-Aware Framing for 3D Modelers

Property args Semantics

Size t,D Area, Width, or Height (the possible values of D) of t, in viewport-relative coordinates

Framing t, Rect the fraction of ¢, which is inside Rect

RelativePosition s,7,RL the fraction of s, which is right, left, above, or below (the possible values of RL) any point of #,

Occlusion s,t the fraction of s, which is occluded by ¢,. ¢ can be equal to scene, which means every object
except s, when we want to take into account any source of occlusion

Angle t,u the angle between vector u and the vector from 7 to the viewpoint; u can be also defined by the

keywords front, up which respectively are ¢ front and up vectors

Table 2: Available properties in the viewpoint computation approach we adopt. In the table, s, are fargets, i.e., objects in the
scene; Rect is a 2D rectangle in viewport coordinates. In the third column, #, indicates the projection of the bounding box of
target ¢ from the viewpoint v, with the exception of the Occlusion property, for which #, is defined by an arbitrary number of

rays from v to points in ¢ bounding box.

dutch angles, and we fix the FOV to the current editor cam-
era FOV setting.

Requirement (b) is implemented by an Occlusion prop-
erty, whose satisfaction function is illustrated in Table 3. Full
visibility (i.e. zero occlusion) will give full satisfaction; until
half visibility, there is a slight decrease in satisfaction (0.8),
and then less then half satisfaction will entail a satisfaction
which is close to zero.

Requirement (c) is implemented by a Size property, whose
satisfaction function is illustrated in Table 3. Until projected
size reaches a minimum value (3%), satisfaction is close
zero; it linearly increases from 0.8 (3% size) to 1 (6% size)
and then decreases gradually until 0.1 (50% size). A greater
size will will entail a satisfaction which is close to zero.

Requirement (d) cannot be implemented with the proper-
ties available in the library. We therefore added a new new
property, called CamOrientation, that computes the angular
difference between a provided orientation (which will be the
orientation of the starting viewport camera) and a candidate
camera orientation. Its satisfaction function is illustrated in
Table 3. A zero difference will give maximum satisfaction,
and the decrease is linear until zero satisfaction is reached
with maximum angular difference.

Given these properties, our viewpoint computation prob-
lem becomes:
min(1.5 * satg;;. (Size(t,Area))+
2 % $at Occlusion (Occlusion(t, scene))+

SALCamOrientation (Camorien[ation(r)) (H

Where ¢ is the selected object, and r is the rotation of the
starting viewport camera. In the next Section, we describe
how we have implemented the visibility-aware framing com-
mand in Unity.

3.1. Implementation

We have extended the Unity editor such that, besides the
standard frame selected functionality, one can use our modi-
fied version by invoking a menu command or a shortcut key.

(© The Eurographics Association 2015.

The extension is implemented as a C# script that can ac-
cess various editor variables and states (e.g., the currently
selected object in the viewport, the viewport camera), as well
as the scene (e.g. bounding boxes, performing ray casts).
Finally, the script implements also the library described in
[RU14], with the additions mentioned above.

To measure visibility, we use Unity-provided ray intersec-
tion queries. More specifically, we cast six rays from a can-
didate camera to the object bounding box center and other
5 random locations inside the bounding box. Visibility is
then computed as the ratio of rays that do not intersect any
other object collider. In our implementation, we use full de-
tail meshes as colliders to maximise precision in computing
visibility. Of course, there could be more precise methods of
computing visibility (from ray casting to an object vertices,
instead of random points inside the object bounding box, to
occlusion queries). However, the chosen method is fast and,
and has given good results in our experience, as we will show
in Section 4 Since ray intersection queries in Unity are com-
puted through the Physx library, this approach has the lit-
tle inconvenience that any object in the scene must be also
represented in Physx, i.e. have an associated collider mesh,
which needs to be previously added in the editor, as this is
the only method that Unity allows. By having access to Unity
source code, however, this issue could be likely eliminated.

To measure projected size, we use the object axis-aligned
bounding box, and measure its projected area using the ap-
proach described in [ST99]. Our understanding is that Unity
uses, for its framing function, the object bounding sphere.
The two methods give similar results for objects that have
roughly the same size in the three dimensions, but will give
different results otherwise. We think the bounding box is
better, as, for objects that are much longer along one side,
the bounding sphere method will result in a much smaller
size on the viewport. However, this could be also a matter
of personal user preferences. We could use oriented bound-
ing boxes to get a more precise measurement of size, but
in this application we are not concerned with precise com-
position, so it would not be probably worth the extra effort.
More precise methods, such as off-screen rendering, besides
being too complex to compute for viewpoint computation

Roberto Ranon & Marc Christie / Visibility-Aware Framing for 3D Modelers

Property Type Semantics Weight Satisfaction Function
A ‘
: bee
, the target object should cover around 6% of i
Size 1.5 :
the screen area i
0 occupied ratio q >
of screen area
the target should not be occluded by other
Occlusion . & Y 2.0
objects
o ocelusion ratio 1
) . angular difference with current viewport
CamOrientation 1.0
camera

0 180
angle of rotation with current
viewport camera

Table 3: Properties defined in our approach to compute a virtual camera.

purposes [RU14], would turn out to be problematic for some
kind of objects, e.g. objects with many holes, which would
be framed at more distance than other objects occupying a
comparable estate on screen.

We set the time allowed for viewport camera computation
to 30 milliseconds, so that there is no perceived delay when
calling our framing function, and use exactly the same stan-
dard Unity animations to transition from the actual viewport
camera to the newly computed one.

Figure 3 shows how our approach handles the example in
Section 2. In both cases, our approach manages to compute
camera viewports that make the selected object fully or al-
most fully (in the case of the plant) visible. In the case of
the monitor, since no change in orientation is required to en-
sure visibility, the computed camera is very similar to Unity
standard framing computed one (see Figure 3a).

4. Experimental Results

To compare our approach with the standard Unity frame
selected command, we have setup an experiment in which
we select a random object from a random viewport cam-
era position and orientation, invoke the standard Unity and
the visibility-aware version of the frame selected command,
and compare the results. The experiment uses the building
scene in Figure 1a. Our comparison is based on measuring
selected object visibility and amount of rotation with respect
to the starting camera. What we expect is that visibility-
aware framing command should obtain much better results
in terms of visibility, while not introducing much rotation
with respect to the starting camera. As mentioned in the pre-
vious Section, the time allowed to our approach to perform
its computation is 30 ms.

We also measure object projected size and overall satis-
faction of the result (with respect to the properties defined
in the previous Section) for both the approaches. What we
expect is that our visibility-aware framing command should
obtain similar results in terms of projected size, as it is de-
signed to do so. Overall satisfaction should also be higher
in the case of our approach, since the standard Unity fram-
ing command will be penalized for not taking into account
visibility.

To measure visibility, we use here a more precise ap-
proach than the one in our framing function. More specif-
ically, we shoot 30 rays, each from the camera position to a
random vertex of the object, and define visibility as the ra-
tio of rays that do not intersect any other object (therefore, 0
equals to full occlusion, 1 to full visibility). For the size of
the selected object, we keep the axis-aligned bounding box
method explained before.

Results on the example scene described in Section 2 for
1000 comparisons are presented in Figure 4. More specifi-
cally, Figure 4a shows the distribution of visibility across all
the comparisons. In the case of our approach, all measured
values, with the exception of some isolated cases (the dots
in the plot) are above 0.6 (i.e. at least 560% of the object is
visible), the second quartile is around 0.8, and the median
is above 0.9 (i.e. the object is almost fully visible). On the
other hand, for the standard Unity framing function the re-
sulting visibility is much more scattered across the whole
range, with a median value of 0.66. Moreover, among the
1000 tests, complete occlusion (i.e. visibility = 0) was found
in 345 cases with the Unity framing command. Finally, with
respect to visibility, the Wilcoxon-Mann-Whitney test con-
firms that our framing function is significantly better than
Unity one (with p<2.2e-16).

(© The Eurographics Association 2015.

Roberto Ranon & Marc Christie / Visibility-Aware Framing for 3D Modelers

(a) Viewport camera after framing the
monitor

(d) Viewport after framing the plant

(c) Viewport camera after framing the plant
Figure 3: Results of using our framing command on the monitor (images a and b) and on the plant (images ¢ and d), each
starting from the initial camera position illustrated in Figure 1b

0.4-

1.00- : 1.00-
H
150 -
0754 03- :
: :
g 1 0.75-
H H 1]
i *
100 - c
z 0 &
Bos0- Hoz- ° 8
o o © 2
> T
. "
i . 0.50- |
. ! 1
H
50-
0.25- T 0.1-
: 0.25- i
:
0.00- . 0.0- 0- —e—
Un‘lty Vlslbwln)‘/—aware Un‘ny \/|s|b\||1)‘/—aware Un‘ny V\S\bl\n)‘/—aware Un‘my Vlslblmy‘—aware
(a) object visibility (b) object projected size (c) rotation wrt previous camera (d) overall satisfaction

Figure 4: Box plots showing the distribution of visibility, size, rotation with respect to previous camera, and satisfaction in the
framing viewport cameras computed by Unity Editor and our visibility-aware framing command. Dots represent outliers. Data
collected over 1000 comparisons in the building scene in Figure 1a

(© The Eurographics Association 2015.

Roberto Ranon & Marc Christie / Visibility-Aware Framing for 3D Modelers

Figure 4c shows the distribution of the angle of rotation
of each found camera with respect to the starting one. For
Unity, all measured values are obviously zero, as there is no
rotation; for our approach, the median value is around 16
degrees, with only isolated cases exceeding 90 degrees.

Figure 4b shows the distribution of projected size across
all the comparisons. Our approach behaves quite similarly
to Unity standard framing function, with less variability in
results. This could be due to the fact that Unity is using the
bounding sphere of the target to compute the camera dis-
tance from it. At practical level, however, our projected size
is very similar to Unity one.

Figure 4c shows the distribution of satisfaction across all
the comparisons. For our framing approach, it shows that in
the majority of cases we are able to reach a satisfaction above
90%, with the first quartile starting at around 80%. The plot
also shows that, in some isolate cases, our approach finds
viewpoints with quite low satisfaction. This is not due to par-
ticularly difficult situations, but to the fact that, sometimes,
PSO initialisation is particularly unfortunate, and the solver
is unable to derive a good solution in the allowed time. In
those cases, we could simply restart search before present-
ing the result to the user, and very likely obtain a good result,
at the price of a little lag in the interaction with the editor.

5. Discussion and Conclusions

Our experimentation, albeit limited to one scene, shows that
our visibility-aware framing function is able to effectively
substitute the Unity standard function, and in addition pro-
vide at least partial, and in the vast majority of cases good,
visibility of the selected object. Moreover, rotation with re-
spect to the starting viewport camera is generally quite lim-
ited.

Of course, measuring the improvements in visibility of
our approach over the standard Unity framing functional-
ity does not tell us whether users would prefer it. While a
formal experiment with users has not been carried out yet,
preliminary reports from a few Unity expert users that tried
our framing functionality were generally positive. Users ap-
preciated the increased visibility, and stated that the new
function would have saved them a few viewport camera ma-
nipulations. Our next step is to compare our feature and the
Unity one in a controlled experiment with users. In particu-
lar, we are interested in understanding whether users like our
visibility-aware framing function, and whether it also trans-
lates into effective savings of time in performing a sequence
of object manipulation tasks.

In the early informal sessions with users, some of them
complained that, in case of relevant changes in viewport
camera orientation, they initially felt disoriented and had to
take some time to understand the new view on the scene.
This could be also due to the fact that Unity built-in view-
port camera animations are very short in time, and therefore

considerable rotations coupled with translation result in very
quick changes in the viewport display, making it difficult
for a viewer to follow. Possible solutions could be to make
camera rotations slower in the animation, or even perform
translations (possibly with very limited rotation) first until
the object is framed at the center, and then rotate around it
until visibility is reached.

Another interesting aspect that came up with users was
about their preferences among possible viewpoints that guar-
antee visibility. For example, some users stated that they typ-
ically like to view objects to be manipulated with an angle
of 45 degrees from the up vector (i.e. between a top and
front view) without degenerate local axes [PBG92], and the
visibility-aware framing function could be modified to take
this into account. More generally, the best view could de-
pend on user’s preferences, as well the kind of task (e.g.
translation versus material manipulation). To take all this
into account, one could also generate multiple alternative
views, e.g. to be displayed in small viewports, so that the
user can choose the one that best suits her preferences or
task.

6. Acknowledgments

Roberto Ranon acknowledges the partial support of the
PRIN 2010 project 2010BMCKBS_013.

References

[BY10] BURELLI P., YANNAKAKIS G. N.: Global Search
for Occlusion Minimisation in Virtual Camera Control. In
IEEE Congress on Evolutionary Computation (Barcelona, 2010),
IEEE. 2

[CNO12] CHRISTIE M., NORMAND J., OLIVIER P.: Occlusion-
free Camera Control for Multiple Targets. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (2012), Eurographics Association, pp. 59—-64. 2

[CONO8] CHRISTIE M., OLIVIER P., NORMAND J.-M.: Camera
Control in Computer Graphics. Computer Graphics Forum 27, 8
(Dec. 2008), 2197-2218. 2

[EK95] EBERHART R. C., KENNEDY J.: Particle swarm opti-
mization. In Proceedings of the IEEE International Conference
on Neural Networks 1995 (1995), vol. 4, pp. 1942-1948. 2, 4

[OSTG09] OSKAM T., SUMNER R. W., THUEREY N., GROSS
M.: Visibility transition planning for dynamic camera control. In
2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation - SCA 09 (New York, New York, USA, 2009), vol. 1,
ACM Press, pp. 55-65. 2

[PBG92] PHILLIPS C. B., BADLER N. I., GRANIERI J.: Auto-
matic viewing control for 3D direct manipulation. In /3D ’92:
Proceedings of the 1992 symposium on Interactive 3D graphics
(Cambridge, Massachusetts, USA, 1992), ACM Press, pp. 71-74.
1,8

[RU14] RANON R., URLI T.: Improving the efficiency of view-
point composition. [EEE Transactions on Visualization and
Computer Graphics 20, 5 (2014), 795-807. 2,4, 5,6

[ST99] SCHMALSTIEG D., TOBLER R. F.: Real-time Bounding
Box Area Computation. Tech. Rep. TR-186-2-99-05, Jan. 1999.
5

(© The Eurographics Association 2015.

