Preprint for the following publication:

Patil, I., Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2017). Neuroanatomical basis of concern-based altruism in virtual environment. *Neuropsychologia*. doi:10.1016/j.neuropsychologia.2017.02.015

Neuroanatomical basis of concern-based altruism in virtual environment

Indrajeet Patil^{1,2™}, Marco Zanon^{3*}, Giovanni Novembre^{4*}, Nicola Zangrando⁵, Luca Chittaro⁵, Giorgia Silani⁶

¹Scuola Internazionale Superiore di Studi Avanzati, Neuroscience Sector, Trieste, Italy.
²Department of Psychology, Harvard University, Cambridge, MA, USA.
³Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Italy.

⁴Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden

⁵Human-Computer Interaction Lab, Department of Mathematics, Computer Science, and Physics, University of Udine, Udine, Italy.

⁶Department of Applied Psychology: Health, Development, Enhancement and Intervention, University of Vienna, Vienna, Austria.

*These authors contributed equally to this work.

 $^{\square}$ Correspondence should be addressed to:

Indrajeet Patil, 33 Kirkland Street, Cambridge, Massachusetts, 02138, USA. E-mail: patilindrajeet.science@gmail.com

Abbreviations: AI = anterior insula, DBM = deformation-based morphometry, EC =

empathic concern, IRI = interpersonal reactivity index, VR = virtual reality

Abstract

Costly altruism entails helping others at a cost to the self and prior work shows that empathic concern (EC) for the well-being of distressed and vulnerable individuals is one of the primary motivators of such behavior. However, extant work has investigated costly altruism with paradigms that did not feature self-relevant and severe costs for the altruist and have solely focused on neurofunctional, and not neuroanatomical, correlates. In the current study, we used a contextually-rich virtual reality environment to study costly altruism and found that individuals who risked their own lives in the virtual world to try to save someone in danger had enlarged right anterior insula and exhibited greater empathic concern than those who did not. These findings add to the growing literature showing the role of caring motivation in promoting altruism and prosociality and its neural correlates in the right anterior insula.

Keywords: empathy; altruism; prosocial; morphometry; empathic concern; moral

1. Introduction

Humans are unique in terms of their ability to forge large-scale stable cooperation that lies at the heart of complex societal structures, and a considerable share in sustaining this endeavor goes to our prosocial and altruistic impulses. Prosocial behavior is any behavior that benefits others, while altruistic behavior is a subset of prosocial behaviors that improves welfare of the recipient and comes at a cost to the altruist (Batson, 2011; de Waal, 2008). Altruistic acts can be as simple as giving one's seat to an older person in a crowded bus or can be as extreme and extraordinary as entering a building on fire to rescue someone. A burgeoning body of work carried out across several academic disciplines using a multitude of approaches has shed light on biological, psychological, and neural underpinnings of different forms of altruism (e.g., Böckler, Tusche, & Singer, 2016; Marsh, 2016). In the current study, we focus specifically on the neural basis of what motivates possibly the most enigmatic variety of altruism: helping behaviors that come at a high cost to the self, also called extreme or costly altruism (FeldmanHall, Dalgleish, Evans, & Mobbs, 2015; Rand & Epstein, 2014), e.g. firefighters who rush into buildings on fire to rescue other people. Prior work has traced the roots of costly altruism to empathic concern (EC) (also labeled as sympathy or compassion), an other-oriented feeling of concern in response to another individual's state of distress or suffering, which relies on neural mechanisms involved in parental care and social attachment (FeldmanHall et al., 2015; Marsh, 2016; Morelli, Rameson, & Lieberman, 2014; Preston, 2013; Shaver, Mikulincer, Gross, Stern, & Cassidy, 2016; Swain et al., 2012; Zahn, de Oliveira-Souza, Bramati, Garrido, & Moll, 2009).

An important terminological distinction between empathy and EC is worth underlining. Empathy, in a narrow sense, entails our capacity to *represent* (cognitive component) and *feel* (affective component) what other people feel ("I feel anxious because you feel anxious"), while EC represents our ability to *care* about what other people feel ("I am concerned about you because you seem anxious") (de Vignemont & Singer, 2006). In line with extensive prior theoretical discussions highlighting this conceptual distinction (Batson, 2009; de Vignemont & Singer, 2006), recent empirical work demonstrates that empathy and EC are psychologically distinct and empirically distinguishable (Bloom, 2017; Jordan, Amir, & Bloom, 2016; Singer & Klimecki, 2014). Furthermore, a large amount of evidence (see Supplementary Text S1 for more detailed discussion) supports the claim that this general dispositional concern for the welfare of someone in distress (i.e., EC/compassion) is the primary contributor to our moral actions and thoughts, and not - as it has been proposed - the aversive arousal state stemming from empathy (Bach, Defever, Chopik, & Konrath, 2016; Batson, 2011; Bekkers & Ottoni-Wilhelm, 2016; Bethlehem et al., 2016; Bierhoff, Klein, & Kramp, 1991; Bloom, 2016; Brethel-Haurwitz, Stoycos, Cardinale, Huebner, & Marsh, 2016; Carlo, Mestre, Samper, Tur, & Armenta, 2010; Cecchetto, Korb, Rumiati, & Aiello, 2017; Chopik, O'Brien, & Konrath, 2017; Crocetti et al., 2016; Decety & Yoder, 2015; Desteno, 2015; FeldmanHall et al., 2015; Gesiarz & Crockett, 2015; Graham et al., 2011; Habashi, Graziano, & Hoover, 2016; Hu, Strang, & Weber, 2015; Hubbard, Harbaugh, Srivastava, Degras, & Mayr, 2016; Jordan et al., 2016; Kawamichi et al., 2015; Maner et al., 2002; Nook, Ong, Morelli, Mitchell, & Zaki, 2016; Paciello, Fida, Cerniglia, Tramontano, & Cole, 2013; Patil, Melsbach, Hennig-Fast, & Silani, 2016; Patil & Silani, 2014a, 2014b; Persson & Kajonius, 2016; Ru et al., 2017; Sassenrath, Pfattheicher, & Keller, 2017; Shaver et al., 2016; Stocks, López-Pérez, & Oceja, 2017; Wilhelm & Bekkers, 2010; Winczewski, Bowen, & Collins, 2016). In other words, an individual's willingness to help others in need at a cost to the self is driven not by an urge to minimize self-oriented distress stemming from witnessing someone in need, but by otheroriented caring motivation.

Despite this large amount of work implicating caregiving (EC) as the primary motive in costly altruism, the extant literature falls short on two counts. First, the costly altruistic behaviors have

not been assessed using ecologically valid and contextually salient paradigms, and have relied on either decontextualized hypothetical vignettes or on more ecologically valid paradigms that did not feature high (harmful) cost for the altruists (cf. Grueter et al., 2016). For example, a number of lab-based experiments have studied altruism using economic games that typically feature salient and realistic paradigms (Fehr & Schmidt, 2006), but behavior in such games has been argued to be confounded with factors other than altruistic motives (e.g., Burton-Chellew, Nax, & West, 2015) or found to be weakly correlated with real-life altruism (Brethel-Haurwitz et al., 2016; Winking & Mizer, 2013). Additionally, these paradigms investigate moral domain of fairness rather than physical harm, which is what we wanted to focus on here. Second, studies focusing on the neural underpinnings of costly altruism have primarily examined the neurofunctional, but not on the neuroanatomical correlates of such behavior. To the best of our knowledge, only one prior study has addressed both of these concerns by showing that the individuals who had donated one of their kidneys to a complete stranger, an act of extraordinary altruism, had larger amygdalae than controls (Marsh et al., 2014).

In the current study, both issues were addressed simultaneously by investigating the role of EC and the neuroanatomical basis of costly helping behavior in scenarios involving the highest cost possible: risking one's own life to save a stranger. Of course, it is ethically unacceptable to create lab situations that may put anybody's life in danger and, although text-based descriptions of dangerous situations can be safe and informative, participants' self-reports in the domain of morality can be notoriously unreliable for accurately predicting their actual behavior (FeldmanHall et al., 2012; Francis et al., 2016; Patil, Cogoni, Zangrando, Chittaro, & Silani, 2014; Teper, Tullett, Page-Gould, & Inzlicht, 2015; Winking & Mizer, 2013). This is because such hypothetical settings are low in naturalistic intensity (i.e., the intensity of the sensory input or subjective processing) and evoke only a subset of mechanisms compared to more realistic choices (Camerer & Mobbs, 2017). To overcome these issues, we thus employed

a virtual reality (VR) environment to simulate a life-threatening situation, in which participants were faced with the decision whether to save another participant at the risk of their own life. With this methodology, we were able to provide a contextually rich and more lifelike environment that we could control, and could thus- (*i*) study current behavior of participants rather than relying on their past behavior, (*ii*) focus on more typical individuals over those belonging to the high end of the distribution (cf. Marsh et al., 2014). VR thus helps overcome some of the limitations of the classical experimental paradigms in social neuroscience (Parsons, 2015; Rosenberg, Baughman, & Bailenson, 2013; Sanchez-Vives & Slater, 2005), especially in the fields of moral cognition and prosocialilty that feature choices in which executing realistic consequences experimentally is impossible or unethical (Francis et al., 2016; Navarrete, McDonald, Mott, & Asher, 2012; Patil et al., 2014; Skulmowski, Bunge, Kaspar, & Pipa, 2014; Zanon, Novembre, Zangrando, Chittaro, & Silani, 2014).

The purpose of this study was to assess whether there are any structural differences between brains of altruists versus non-altruists, classified as such based on their behavior in a VR task with high naturalistic intensity, providing a high degree of contextual information and ecological validity. We predicted that altruists would show enlargement of regions associated with EC, given the overwhelming evidence that puts such compassionate motivation at the heart of explaining costly altruism.

2. Methods and Materials

2.1 Participants

Eighty participants (26 females) participated in the experiment and were financially compensated for time and travel expenses. The mean age of the sample was 23.71 years (SD = 3.44; range = 19-37). All participants gave written informed consent. The study was approved by the ethics committee of the hospital "Santa Maria della Misericordia" (Udine, Italy). Rule-

out criteria for participation included non-native speakers of Italian, presence of a diagnosed psychiatric illness and/or history of psychiatric treatment, history of significant neurological illness or brain injury, and current usage of psychoactive drugs. All participants were screened for neurological conditions and MRI contraindications first through pre-scanning telephone interviews and second before entering the scanner. All participants had normal structural brain MR scans. Part of the dataset (n = 43) came from a previous study (Zanon et al., 2014), where participants performed the task while functional data was acquired.

2.2 Behavioral tasks

2.2.1 Empathic concern

All participants completed the EC subscale of the Italian-validated version of the Interpersonal Reactivity Inventory (IRI; Albiero, Ingoglia, & Lo Coco, 2006; Davis, 1983). Participants reported agreement on 7 statements (e.g., "I often have tender, concerned feelings for people less fortunate than me.", $\alpha = 0.658$) on a 5-point Likert scale (1: *never true for me*, 5: *always true for me*). This subscale measures the *other-oriented* tendency to experience feelings of warmth, compassion, and concern for other people. Although not of interest to our hypothesis, we also collected data for other subscales of the IRI (full details provided in Supplementary Text S3).

2.2.2 Virtual reality task

Participants' altruistic behavior was assessed using a previously validated VR task (Zanon et al., 2014) reproducing a life-threatening situation that pits saving one's own life by evacuating a building on fire against risking it to rescue someone else in danger. The virtual experience was implemented using the C# programming language and NeoAxis (http://www.neoaxis.com), a game engine based on the Ogre rendering engine

(http://www.ogre3d.org). VR has been shown to be effective in eliciting a high degree of sense of presence (Diemer, Alpers, Peperkorn, Shiban, & Mühlberger, 2015; Schubert, Friedmann, & Regenbrecht, 2001) and negative emotions (Chittaro, 2014; Diemer et al., 2015; Zanon et al., 2014). To increase sense of presence in the simulated experience, the scenario was experienced from a first-person perspective (Bergström, Kilteni, & Slater, 2016), with the help of an MRI-compatible headphones for audio stimuli, and goggles for visual stimuli. Video samples are available at: https://osf.io/3hr3q/

Instructions: Participants performed the task inside the scanner and were instructed via intercom. They were told that the objective of the task was to study strategies used by people while evacuating buildings in emergency situations. The experimenter also prompted them to behave in the virtual environment as they would in a real-world situation and thus to evacuate the building as quickly as possible. Participants could move and act in the virtual environment by pressing four buttons on two MRI-compatible response pads: the right hand was used to move respectively leftward, forward, and rightward, whereas the left hand was used to interact with objects in the virtual environment.

Familiarization phase: To familiarize participants with response pad usage for navigating and interacting with objects in the virtual environment, this phase situated participants in a small building. Participants were instructed about how to interact with objects using action prompts (Figure 1a) that appeared at the bottom of the screen (e.g., "spingi" (push), "apri" (open), etc.). At the end of this familiarization phase, participants were asked to lift and move away three virtual boxes placed in an empty room of the environment (Figure 1b). To simulate the effort needed for successfully moving heavy boxes, the participant had to press repetitively the button on the response pad, until the object moved (41 button presses were required to completely move away the object).

Figure 1. The virtual reality (VR) paradigm. (a)-(b) Screenshots of the initial familiarization phase session in which participants learned how to interact with objects in the VR environment (e.g., opening doors, lifting boxes, etc.). (c) During the initialization phase, the participant was placed in the VR environment in which the experimental task was going to take place. (d)-(e) In the experimental phase, the

participant was supposed to exit a building on fire. The dangerousness of the situation was emphasized by visual cues, such as smoke in the corridors, reduced visibility, and sounds such as coughs. Additionally, the 'life energy' bar informed participants about the amount of life left and was always visible in the upper right corner of the screen. (f) At the end of the experimental phase, when there was little life left in the avatar, participants encountered an avatar trapped by a heavy cabinet and they could either stop to help and rescue this avatar (altruistic decision) or carry on without stopping and save their own life (non-altruistic decision).

Initialization phase: After the familiarization phase, the screen faded to black and was then replaced by a virtual meeting room in which participants could see three other avatars (Figure 1(c)). Participants were told that these avatars were controlled in real time by other participants connected via intranet and performing the same task from computers located in another building. The movements of the avatars were actually pre-programmed and controlled by the computer application. Participants could explore the meeting room for about a minute, observe the behaviors of the other avatars, and could also go close to them. When approached, the avatars did not engage in any social interaction with the participant and continued their exploration of the meeting room.

Experimental phase: This phase started with a voice message on the public-address system of the virtual building as an emergency alarm sounded in the background. The message stated that fire had broken out and the building had to be immediately evacuated by all people by following the emergency signs. To increase the realism of the setting, the sound for the emergency alarm and the emergency signs followed Italian regulations for fire safety in the workplace. While participants were trying to evacuate the building by following the emergency signs, aversive visual and auditory feedback was provided by continuous emergency alarm sound, and repeated announcement to evacuate the building. Furthermore, the participant heard the sound

of her/his own avatar coughing due to smoke inhalation and the visual field was reduced when (s)he was in danger, to simulate tunnel vision phenomena that occur in high stress conditions. This type of feedback has been shown to be effective in creating an experience of risk and danger in VR (Chittaro, 2014; Chittaro & Zangrando, 2010). Participants could track how much 'life energy' was left in their avatar on a bar labeled as 'life energy'. At the beginning of the evacuation, the bar was fully charged and shaded in green (Figure 1d-e).

Close to the end of the path (i.e., the exit of the building), participants unexpectedly encountered an injured male avatar (cf. FeldmanHall et al., 2016) previously seen¹ in the meeting room but now lying on the floor, trapped under a heavy cabinet and asking for help. At this time, participant's 'life energy' bar had already depleted and was shaded in red (Figure 1f). Each participant was thus confronted with a dilemma between saving their own life by exiting the building without stopping or spending time at the possible cost of their own life to rescue the trapped avatar, by removing the heavy cabinet. The amount of effort to move away the cabinet and free the avatar was set to 150 button presses. While the participants were trying to free the trapped avatar from under the cabinet, two aspects of the virtual environment conveyed the presence of danger: (*i*) a flashing red aura in the peripheral visual field, (*ii*) heartbeat sound at a progressively increasing frequency, played through the headphones, and (*iii*) red and almost finished 'life energy' bar. During debriefing, some participants also mentioned that the confined space of the MRI magnet bore, and the ensuing claustrophobic feeling, further amplified a sense of urgency and danger.

It is important to note that the gradient by which the 'life energy' bar decreased from the beginning of the evacuation was identical for each participant to make sure that they all had a

¹ The victim was a stranger, just briefly seen at the beginning of the experience, because we wanted to avoid any unwanted effects that familiarity, liking, role-obligations, or other pre-existing attitudes might have on sympathetic responding (Batson, 2011).

very little amount of 'life energy' left when they encountered the trapped avatar. Furthermore, if a participant stopped to rescue the avatar, the bar kept decreasing, although the decrease was controlled in such a way that the participant could not "die" in the virtual experience. The purpose of the bar was to add to the sense of urgency, and to highlight the saliency of the threat to the participant's own avatar. The emergency experience ended when participants moved away from the point of encounter with the avatar and reached the emergency exit, with the scene fading away automatically.

Participants were divided into two groups based on the choice they made about helping the trapped avatar:

- *altruistic*, who stopped and either successfully helped the avatar, or started helping but then left before moving the cabinet away completely, without freeing the avatar;
- (ii) *non-altruistic*, who passed by without stopping to help the trapped avatar.

Note that we included individuals who stopped to rescue the trapped person but could not in the altruistic group. This is because altruistic behavior is defined as helping others at a cost to the self and, to the degree that stopping to help someone in a burning building with little 'life energy' remaining is a cost to the self, these individuals did behave altruistically².

Debriefing: At the end of the experiment, participants were informally debriefed, and were informed that the avatars were controlled by the computer application. None of them reported to have been suspicious about the fact that the avatars were computer controlled. We also asked them to report their subjective impression in an open-ended format, which revealed that the VR experience was indeed felt as very distressing. A subset of participants (n = 43) also

² Indeed, the Carnegie Hero Fund Commission awards the Carnegie medal, one of the most prestigious recognitions for acts of heroism, to people who risk their lives to an extraordinary degree either to save or *attempt* to save the lives of others (http://www.carnegiehero.org/).

completed the iGroup Presence Questionnaire (IPQ: <u>http://www.igroup.org/pq/ipq/index.php;</u> Schubert, Friedmann, & Regenbrecht, 2001) to assess the subjective experience felt by the participant in the VR (Schubert et al., 2001; Witmer & Singer, 1998) (full details in Supplementary Text S2).

2.3 MRI data acquisition and preprocessing

Acquisition: High-resolution structural images were acquired as 190 T1-weighted transverse images with a 3D ultrafast gradient echo sequence on a 3 T Philips Achieva scanner at the Hospital 'Santa Maria della Misericordia' (Udine, Italy) equipped with an 8-channel SENSE head coil. The following parameters were used: voxel size = $1 \times 1 \times 1$ mm, TR/TE = 8.2/3.7 ms, matrix size = 240×240 mm, field of view = 19 cm, flip angle = 8° , no overcontiguous slices.

Preprocessing: Both preprocessing and statistical analyses were carried out using the Computational Anatomy Toolbox (CAT12: <u>http://dbm.neuro.uni-jena.de/cat12/</u>) for SPM12 running on MATLAB R2013a (MathWorks, Natick, Massachusetts, USA).

Bias field correction was applied to correct for MRI inhomogeneities, which are especially prevalent at high field strengths (\geq 3T), noise was removed and intensities were normalized (Vovk, Pernuš, & Likar, 2007). Each image was then simultaneously segmented³ and normalized into six different tissues classes (grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), bone, other soft tissues, and air/background) using the modified unified segmentation approach implemented in SPM12 (Malone et al., 2015). During normalization, the anatomy of each subject was mapped into the anatomy of a common

³ Note that the deformation-based analyses focus not on the registered voxels in segmented images, like in the voxel-based morphometry, but on the deformation fields used to register them to the template image (Mietchen & Gaser, 2009).

template in MNI stereotactic space ($2 \times 2 \times 2$ mm) by iteratively registering segmented images via a fast diffeomorphic registration algorithm (DARTEL; Ashburner, 2007) to CAT12's default template (IXI555_MNI152) (cf. Michael, Evans, & Moore, 2016). Non-linear deformation field, defined by a displacement vector at each voxel constituting the transformation required to map a voxel of the template to its corresponding position in the subject brain, were estimated for each individual image such that tissue probability maps for each tissue class were best aligned. The Jacobian matrices at each point of the deformation field contain information not only on local stretching but also on shearing and rotation and are reliable for indicating local brain shape and sensitive to the shape variations across groups (Davatzikos et al., 1996). The Jacobian determinant (JD) of this matrix⁴ quantifies local shrinkage or enlargement caused by warping while registering images to the template: JD > 1 indicates tissue expansion, JD < 1 denote tissue contraction, JD = 1 indicates identical volumes, JD < 0 are indicative of folding, and JD $\rightarrow \infty$ denotes tearing (Wang, Jiang, Cao, & Wang, 2007). These JD images were smoothed with an isotropic Gaussian kernel with FWHM of 15 mm to improve delineation of patterns of shape difference.

Before carrying out statistical analysis, quality assurance review of the final GM images was performed using the CAT12 toolbox. Sample homogeneity was assessed using a number of measures (noise, bias, weighted overall image quality). Data from one participant was consistently found to be an outlier in the boxplot for all quality measures and was thus removed from the final analysis (n = 79; altruistic: n = 51, non-altruistic: n = 28).

2.4 Deformation-based morphometry (DBM) analysis

⁴ Note that the Jacobian matrix is a tensor and, thus, this method is also sometimes called more specifically as tensor-based morphometry (TBM) (Ashburner, 2009; Ashburner & Friston, 2004). However, we stick to the general term DBM, like in prior work (Chung et al., 2001; Gaser, 2016; Gaser et al., 2001), to refer to any method that uses deformation fields for morphometry analyses.

Because the JD value for each participant is derived with respect to the same template, all participants' brains can be compared with each other by employing a voxel-wise general linear model (GLM), regardless of their shapes. This property allows us to calculate point-wise statistics and create statistical parametric maps for the DBM analysis, which has been shown to be an unbiased and highly regional sensitive automated technique for volumetric assessments from MR images (Ashburner et al., 1998; Ashburner & Friston, 2004; Chung et al., 2001; Gaser, 2016; Gaser, Nenadic, Buchsbaum, Hazlett, & Buchsbaum, 2001; Gaser, Volz, Kiebel, Riehemann, & Sauer, 1999; Mietchen & Gaser, 2009). The DBM analysis can be either multivariate, such that the entire three-dimensional deformation field can be used to find global differences, or it can be univariate using the local JD as a derivative of the field. We utilized here the latter approach because- (*i*) we were interested in local volumetric differences between altruists and non-altruists (for which the local Jacobian is a superior option), and (*ii*) global DBM results are comparatively more difficult to interpret because they combine information about both directional displacement of structure and local size differences (for more, see Gaser et al., 2001).

Creating the mask for EC: Before investigating group differences between altruistic and nonaltruistic individuals, we localized the regions that tracked interindividual variation in the selfreported EC scores. To this effect, we used a multiple regression model that included age, agesquared (to model quadratic effects of age), and gender as nuisance covariates (O'Brien et al., 2011). This analysis revealed the regions that showed positive association with trait EC (Supplementary Text S4), i.e. higher EC was associated enlargement of the respective areas, and were therefore included in the mask. Although all identified regions (p < 0.001, k > 10) were included in the mask, we *a priori* expected effects at the insular lobe (x = 44, y = 17, z =-10) in light of prior studies showing a positive association between self-reported EC scores and morphometric measures of insula (Banissy, Kanai, Walsh, & Rees, 2012; Bernhardt, Valk, et al., 2014; Eres, Decety, Louis, & Molenberghs, 2015; Mutschler, Reinbold, Wankerl, Seifritz, & Ball, 2013; Valk et al., 2016; Yue, Pan, & Huang, 2016).

Group comparison: The volume change maps (i.e., JD images) for subjects in each group were analyzed with a two-sample *t*-test, with age, age-squared, and gender included as nuisance covariates (O'Brien et al., 2011). Note that total intracranial volume (TIV) was not added as a covariate for DBM because the affine part of the deformation field is ignored when JD images are saved (http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf).

Given recent criticism of parametric cluster-level inference (Eklund, Nichols, & Knutsson, 2016; Woo, Krishnan, & Wager, 2014), significant clusters were formed by employing the threshold-free cluster enhancement (TFCE) method (as implemented in TFCE toolbox (r93): http://dbm.neuro.uni-jena.de/tfce/). The TFCE is a cluster-based thresholding method that circumvents the problem of choosing an arbitrary cluster forming threshold (e.g., p < 0.001 (uncorrected) and k = 10) by taking a raw statistics image and producing an output image in which the voxel-wise values represent the amount of cluster-like local spatial support (Smith & Nichols, 2009). This also makes the TFCE inference fairly robust to non-stationarity in the data under varying smoothness levels, degrees of freedom and signal to noise ratios (Li, Nickerson, Nichols, & Gao, 2016; Salimi-Khorshidi, Smith, & Nichols, 2011). The TFCE image is then turned into voxel-wise *p*-values via a permutation-based non-parametric testing (10000 permutations were used in the current study). All group comparisons are reported at *p* < 0.05 after Family-wise Error (FWE) correction (Roiser et al., 2016).

Additionally, past research has shown that the rate of Type-I error for group comparisons in morphometry studies is robust to choices of smoothing kernel, sample size, and modulation only for balanced designs (Scarpazza, Tognin, Frisciata, Sartori, & Mechelli, 2015), but can inflate in highly unbalanced designs due to the violation of the assumption of normality

(Scarpazza, Sartori, De Simone, & Mechelli, 2013). Since we had unequal sample sizes⁵ across groups, recommended nonparametric whole-brain analysis (Scarpazza et al., 2016) was performed using the SnPM toolbox (SnPM13; http://warwick.ac.uk/snpm) to assess the robustness of our results (10000 permutations, no variance smoothing).

The DBM was carried out at the whole-brain level using the EC mask as an explicit mask, i.e. by restricting analysis only to the voxels which were associated with variation in dispositional EC, in order to avoid too stringent thresholds for multiple comparison (see Supplementary Text S4).

2.5 Data availability

Unthresholded DBM statistical maps of reported contrasts are available on Neurovault (Gorgolewski et al., 2015; Roiser et al., 2016) at the following address:

http://neurovault.org/images/29237/

All the behavioral data are available at: <u>https://osf.io/3hr3q/</u>

3. Results

3.1 Behavioral results

According to their behavior after encountering the avatar trapped under the cabinet, participants were subdivided in two groups:

⁵ Although it would have been ideal to have a fully balanced design, we would like to underscore that there was no way we could ascertain participants' behavior *a priori*, i.e. there was no way we could have known how many participants would behave in an altruistic manner. Also, note that the sample size for each group was greater than what is deemed as the absolute minimum sample size per cell (n > 20; Simmons, Nelson, & Simonsohn, 2011).

- 1. *altruistic* group (participants who stopped to help, irrespective of whether they were successful or not): n = 52 (16 females);
- 2. *non-altruistic* group (participants who did not stop to help): n = 28 (10 females).

Therefore, there were more altruistic (65%) than non-altruistic (35%) participants in the sample (Z = 2.571, p = 0.010) and the gender composition did not differ across groups ($\chi^2(1) = 0.203$, $p = 0.652, \phi = 0.050$).

Importantly, altruists did not differ from non-altruists on any aspect of experienced realism or sense of presence in the VR (MANOVA: F(4,38) = 1.889, p = 0.132; Wilk's $\Lambda = 0.834$, $p\eta^2 = 0.166$; see Supplementary Text S2 for more details). Thus, it is unlikely that altruists were more willing to come to the rescue of (compared to non-altruists) the trapped humanoid in the virtual environment because they didn't find the VR to be realistic enough.

Although altruists had numerically higher EC scores than non-altruists (altruist: 3.698, nonaltruist: 3.556), this difference was not significant (Welch's *t*-test: t(47.21) = 1.134, d = 0.281, p = 0.263), which could have been due to a dichotomous question with limited variation in the response (compared to continuous response scale). For this reason, we conducted the additional online survey with both dichotomous and continuous response scales and indeed found that higher EC scores were associated with increased (continuous) moral permissibility ratings for altruistic choice (Pearson's r = -0.208, p = 0.018). Additionally, we also observed the expected judgment-behavior discrepancy (FeldmanHall et al., 2012; Francis et al., 2016; Patil et al., 2014; Teper, Inzlicht, & Page-Gould, 2011; Teper et al., 2015; Winking & Mizer, 2013) – people were more altruistic while making judgments hypothetical text-based scenarios (91%) than when they acted in VR scenarios (65%) ($\chi^2(1) = 85.465$, p < 0.001, $\phi = 0.318$; all details provided in Supplementary Text S5).

3.4 Morphometry results

Altruistic versus non-altruistic: The DBM analysis did show an expected volumetric increase⁶ in the altruistic group compared to the non-altruistic group, such that the right insular lobe was expanded in altruists as compared to non-altruists (Figure 2): x = 50, y = 17, z = -10; TFCE = 32.28, k = 4, p = 0.018 (FWE-corrected). A similar result was also obtained in the SnPM analysis⁷: x = 50, y = 17, z = -10; k = 7, t = 3.65, p = 0.0131 (FWE-corrected at voxel-level). We used the NeuroSynth (http://neurosynth.org/locations/) database to assess the location-to-term association (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) and found that the term anterior insula (AI) was significantly associated with these coordinates (Z = 4.55, p < 0.00001, posterior probability = 0.69).

⁶ As seen in Figure 2, the AI was consistently larger in the template brain (JD < 1) with respect to both groups (p < 0.001). But importantly the group difference is unaffected by this issue (Christian Gaser, personal correspondence).

⁷ To address the possibility that this result was due to idiosyncrasies associated with our study-specific mask, we carried out an image-based small-volume correction with a meta-analytic functional map for empathy as an additional reliability check and observed the same result (Lamm, Decety, & Singer, 2011): x = 50, y = 15, z = -6; k = 74, p < 0.0001 (primary threshold), p = 0.018 (FWE-corrected).

Figure 2. On the left, result of the comparison between altruistic and non-altruistic participants at the whole-brain level are shown. Maps are thresholded at p < 0.001, k = 0 uncorrected without any mask for illustrative purposes. On the right, the scatterplot of brain deformation differences extracted at the peak voxel [50, 17, -10] accounting for nuisance variables is depicted. Altruistic participants had a more expanded insular lobe compared to non-altruistic participants (t(66.262) = 4.247, d = 1.043, p < 0.001, 95% CI [0.0671, 0.1736], 5000 bootstrap samples). Volume change data presented in figures are non-independent and should *not* be used for effect size estimates (Vul & Pashler, 2017). They are included here only as a visual aid for interpretation of results. The error bars represent standard deviation.

No clusters of voxels survived correction for multiple comparisons under TFCE (p(FWE-corrected) < 0.05) when the same analysis was repeated without explicit mask.

Non-altruistic versus Altruistic: No suprathreshold voxels were found for this contrast, even at a more liberal threshold (p(uncorrected) < 0.001).

4. Discussion

The goal of our study was to investigate the neuroanatomical basis of costly altruism and the motivating role of EC in this phenomenon. In particular, we showed that people who engaged in costly unreciprocated altruistic behavior, which entailed risking one's own life to save a stranger, had enlarged right AI compared to those who preferred to save themselves without helping. Importantly, this behavior was investigated using ecologically valid scenarios rich in contextual information (like situational cues, reward/punishment contingencies, etc.) instead of hypothetical moral scenarios with all non-essential contextual information stripped away. Additionally, EC was associated with increased moral permissibility of costly altruistic behavior and variation in the size of the insular cortex. Thus, we show that assisting vulnerable

individuals at a great cost to the (virtual) self is motivated by the proximate mechanism of caring for others in need.

These findings are consistent with one of the key functional roles associated with the insular cortex, namely emotional processing related to social interactions (Lamm & Singer, 2010). In particular, the AI is one of the key neurobiological substrates of EC (or compassion or sympathy) for others (for a review, see Hastings, Miller, Kahle, & Zahn-Waxler, 2013). Compassion for both social and physical pain in others activates the AI (Immordino-Yang, McColl, Damasio, & Damasio, 2009) and self-reports of compassion experience are correlated with increased activation in AI (Simon-Thomas et al., 2012). Furthermore, activation in the AI also correlates with trait, self-reported EC or compassion and is associated with subsequent helping behavior towards ingroup members (Hein, Silani, Preuschoff, Batson, & Singer, 2010; Hubbard et al., 2016) and prosocial behavior exhibited towards socially excluded individuals (Masten, Morelli, & Eisenberger, 2011). Furthermore, the functional connectivity pattern between AI and other regions can be used to classify motivations (EC-based or reciprocitybased) behind altruistic behavior (Hein, Morishima, Leiberg, Sul, & Fehr, 2016). In line with the hypothesis that early kinship-selective parental care lays the foundations for non-kin altruism by activating a common caregiving system (Marsh, 2016; Shaver et al., 2016), AI activation is also found to be correlated positively with mothers' EC for their babies (Swain et al., 2012) and encodes trial-wise experienced EC for the needy individuals and predicts charitable giving to those in need (Tusche, Bockler, Kanske, Trautwein, & Singer, 2016).

In addition to functional data supporting the role of AI in EC, previous morphometry studies have also revealed a positive association between self-reported EC scores and- (*i*) the grey matter volume of the AI (Banissy et al., 2012; Eres et al., 2015; Mutschler et al., 2013; Yue et al., 2016), (*ii*) increased insular-opercular cortical thickness (Valk et al., 2016), and (*iii*) higher structural covariance between dorsal AI and prefrontal-limbic regions (Bernhardt, Klimecki,

Leiberg, & Singer, 2014). Long-term meditation practitioners who have cultivated lovingkindness and compassion are found to have increased cortical thickness in insular cortices (Engen, Skottnik, Ricard, & Singer, 2017). Additionally, patients with insular damage due to glioma score less on self-report measures of EC than patients with noninsular glioma and healthy controls (Chen et al., 2016). The current data are also in line with the prior work showing that individuals who exhibit cooperative behavior in economic games based on payit-forward reciprocity have larger grey matter volume in AI (Watanabe et al., 2014). Thus, both functional and anatomical MRI data converge to implicate the AI in tracking levels of caring motivation for suffering individuals⁸.

The current study thus extends prior morphometry work in the moral domain (Baez et al., 2016; Baumgartner, Saulin, Hein, & Knoch, 2016; Marsh et al., 2014; Nash, Baumgartner, & Knoch, 2017; Patil, Calò, Fornasier, Young, & Silani, 2017; Prehn et al., 2015) and behavioral work focusing on the role of EC in costly altruism (FeldmanHall et al., 2015) by assessing the neuroanatomical correlates of altruistic behavior in a more ecologically valid task. This provides further evidence that the insular cortex is a key neural substrate of EC for others in need and its structural variation can differentiate altruists from non-altruists in costly helping contexts.

Limitations and future scope

The conclusions derived from the current study need to be qualified by the following limitations. First, we have studied here only one of the antecedents of prosocial behavior, namely EC. A number of other factors have also been shown to promote altruistic behaviors: socioeconomic status (Grueter et al., 2016), subjective well-being (Brethel-Haurwitz & Marsh,

⁸ But there are some studies that do not find any functional relationship between trial-to-trial compassion ratings and activity in AI (e.g., Kanske, Böckler, Trautwein, & Singer, 2015; Klimecki, Leiberg, Ricard, & Singer, 2014).

2014), variation in perceptual sensitivity to fear expressions (Marsh et al., 2014), enhanced impulse control skills (Steinbeis, Bernhardt, & Singer, 2012), and reduced negative affect (Böckler et al., 2016), etc. It is possible that the neuroanatomical correlates associated with these various factors may vary from the ones implicated here. For example, Marsh and colleagues showed that altruistic kidney donors could be distinguished from controls based on the enhanced volume of their right amygdala and elevated responsiveness of this neural region to fearful facial expressions (Marsh et al., 2014). In the context of economic behavior, parameter indexing fairness concerns that drive altruistic decisions to reduce advantageous inequality is found to be correlated with gray matter volume in the temporoparietal junction (TPJ), a region implicated in perspective-taking (Morishima, Schunk, Bruhin, Ruff, & Fehr, 2012). The cortical thickness of the left dorsolateral prefrontal cortex (dIPFC) predicts selfish (versus prosocial) economic behavior due to differences in impulsivity and strategic behavior (Steinbeis et al., 2012; but see Yamagishi et al., 2016). Thus, future studies can conduct a multimodal investigation including diverse measures (cf. Böckler et al., 2016; Peysakhovich, Nowak, & Rand, 2014) and see if they exhibit shared and/or differential structural correlates.

Second, although the task we used to assess costly altruism was contextually salient, it may still be an inadequate substitute for reality (as shown by poor realism ratings for the VR by participants; Supplementary Text S2). The helping behavior was always in the VR and it is unclear under what conditions the same individuals will also exhibit the same behavior in real life. Future studies can try to conduct structural MRI studies comparing real-life heroes that put their lives in danger to save others (e.g., Carnegie Medal winners) with controls to shed further light on this issue. Based on the current findings, we would predict that these individuals will score higher on EC and would have enlarged frontoinsular cortex.

Conclusion

In conclusion, we have shown that individuals who engage in costly altruistic acts involving putting their own life in danger to rescue someone else are motivated by other-oriented concern and have an enlarged AI, that underpins compassionate response towards others' suffering and facilitates helping behavior.

Acknowledgments

Authors gratefully acknowledge Kathryn Francis, Sebastian Korb, and Anne Böckler-Raettig for their insightful comments on the earlier version of the manuscript. Special thanks to Christian Gaser for helpful discussions on morphometry analyses. This work was supported by the Vienna Science and Technology Fund (WWTF; Project CS15-003) to GS.

Conflict of interest statement

No potential conflict of interest was reported by the authors.

References

- Albiero, P., Ingoglia, S., & Lo Coco, A. (2006). Contributo all'adattamento italiano dell'Interpersonal Reactivity Index. *Testing Psicometria Metodologia*, 13(2), 107–125.
- Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. *NeuroImage*, *38*(1), 95–113. http://doi.org/10.1016/j.neuroimage.2007.07.007
- Ashburner, J. (2009). Computational anatomy with the SPM software. *Magnetic Resonance Imaging*, 27(8), 1163–1174. http://doi.org/10.1016/j.mri.2009.01.006
- Ashburner, J., & Friston, K. (2004). Morphometry. In R. S. J. Frackowiak, J. T. Ashburner, W. D. Penny, S. Zeki, K. J. Friston, C. D. Frith, ... C. J. Price (Eds.), *Human brain function* (2nd ed., pp. 707–722). London, UK: Academic Press. http://doi.org/10.1016/B978-012264841-0
- Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., & Friston, K. (1998). Identifying global anatomical differences: deformation-based morphometry. *Human Brain Mapping*, *6*(5–6), 348–57.
- Bach, R., Defever, A. M., Chopik, W. J., & Konrath, S. (2016). Geographic variation in empathy: A state-level analysis. *Journal of Research in Personality*. http://doi.org/10.1016/j.jrp.2016.12.007
- Baez, S., Kanske, P., Matallana, D., Montañes, P., Reyes, P., Slachevsky, A., ... Ibanez, A. (2016). Integration of Intention and Outcome for Moral Judgment in Frontotemporal Dementia: Brain Structural Signatures. *Neuro-Degenerative Diseases*, 16(3–4), 206–17. http://doi.org/10.1159/000441918

Banissy, M. J., Kanai, R., Walsh, V., & Rees, G. (2012). Inter-individual differences in empathy are

reflected in human brain structure. *NeuroImage*, 62(3), 2034–2039. http://doi.org/10.1016/j.neuroimage.2012.05.081

- Batson, C. D. (2009). These things called empathy: eight related but distinct phenomena. In J. Decety & W. Ickes (Eds.), *The Social Neuroscience of Empathy* (pp. 3–16). The MIT Press. http://doi.org/10.7551/mitpress/9780262012973.001.0001
- Batson, C. D. (2011). *Altruism in Humans* (1st ed.). New York, NY: Oxford University Press. http://doi.org/10.1093/acprof:oso/9780195341065.001.0001
- Baumgartner, T., Saulin, A., Hein, G., & Knoch, D. (2016). Structural Differences in Insular Cortex Reflect Vicarious Injustice Sensitivity. *PLoS ONE*, 11(12), e0167538. http://doi.org/10.1371/journal.pone.0167538
- Bekkers, R., & Ottoni-Wilhelm, M. (2016). Principle of Care and Giving to Help People in Need. *European Journal of Personality*, 30(3), 240–257. http://doi.org/10.1002/per.2057
- Bergström, I., Kilteni, K., & Slater, M. (2016). First-Person Perspective Virtual Body Posture Influences Stress: A Virtual Reality Body Ownership Study. *PLoS ONE*, *11*(2), e0148060. http://doi.org/10.1371/journal.pone.0148060
- Bernhardt, B., Klimecki, O. M., Leiberg, S., & Singer, T. (2014). Structural covariance networks of the dorsal anterior insula predict females' individual differences in empathic responding. *Cerebral Cortex*, 24(8), 2189–98. http://doi.org/10.1093/cercor/bht072
- Bernhardt, B., Valk, S., Silani, G., Bird, G., Frith, U., & Singer, T. (2014). Selective Disruption of Sociocognitive Structural Brain Networks in Autism and Alexithymia. *Cerebral Cortex*, 24(12), 3258–67. http://doi.org/10.1093/cercor/bht182
- Bethlehem, R. A. I., Allison, C., van Andel, E. M., Coles, A. I., Neil, K., & Baron-Cohen, S. (2016). Does empathy predict altruism in the wild? *Social Neuroscience*. http://doi.org/10.1080/17470919.2016.1249944
- Bierhoff, H. W., Klein, R., & Kramp, P. (1991). Evidence for the Altruistic Personality from Data on Accident Research. *Journal of Personality*, 59(2), 263–280. http://doi.org/10.1111/j.1467-6494.1991.tb00776.x
- Bloom, P. (2016). Against Empathy: The Case for Rational Compassion (1st ed.). Ecco.
- Bloom, P. (2017). Empathy and Its Discontents. *Trends in Cognitive Sciences*, 21(1), 24–31. http://doi.org/10.1016/j.tics.2016.11.004
- Böckler, A., Tusche, A., & Singer, T. (2016). The Structure of Human Prosociality: Differentiating Altruistically Motivated, Norm Motivated, Strategically Motivated, and Self-Reported Prosocial Behavior. Social Psychological and Personality Science, 7(6), 530–541. http://doi.org/10.1177/1948550616639650
- Brethel-Haurwitz, K. M., & Marsh, A. (2014). Geographical Differences in Subjective Well-Being Predict Extraordinary Altruism. *Psychological Science*, 25(3), 762–71. http://doi.org/10.1177/0956797613516148
- Brethel-Haurwitz, K. M., Stoycos, S. A., Cardinale, E. M., Huebner, B., & Marsh, A. (2016). Is costly punishment altruistic? Exploring rejection of unfair offers in the Ultimatum Game in real-world altruists. *Scientific Reports*, 6, 18974. http://doi.org/10.1038/srep18974
- Burton-Chellew, M. N., Nax, H. H., & West, S. A. (2015). Payoff-based learning explains the decline in cooperation in public goods games. *Proceedings of the Royal Society of London B: Biological Sciences*, 282, 20142678. http://doi.org/10.1098/rspb.2014.2678

- Camerer, C., & Mobbs, D. (2017). Differences in Behavior and Brain Activity during Hypothetical and Real Choices. *Trends in Cognitive Sciences*, *21*(1), 46–56. http://doi.org/10.1016/j.tics.2016.11.001
- Carlo, G., Mestre, M. V., Samper, P., Tur, A., & Armenta, B. E. (2010). Feelings or cognitions? Moral cognitions and emotions as longitudinal predictors of prosocial and aggressive behaviors. *Personality and Individual Differences*, 48(8), 872–877. http://doi.org/10.1016/j.paid.2010.02.010
- Cecchetto, C., Korb, S., Rumiati, R. I., & Aiello, M. (2017). Emotional reactions in moral decisionmaking are influenced by empathy and alexithymia. *Social Neuroscience*. http://doi.org/10.1080/17470919.2017.1288656
- Chen, P., Wang, G., Ma, R., Jing, F., Zhang, Y., Wang, Y., ... Zhang, X. (2016). Multidimensional assessment of empathic abilities in patients with insular glioma. *Cognitive, Affective, & Behavioral Neuroscience, 16*(5), 962–975. http://doi.org/10.3758/s13415-016-0445-0
- Chittaro, L. (2014). Anxiety Induction in Virtual Environments: An Experimental Comparison of Three General Techniques. *Interacting with Computers*, 26(6), 528–539. http://doi.org/10.1093/iwc/iwt049
- Chittaro, L., & Zangrando, N. (2010). The persuasive power of virtual reality: Effects of simulated human distress on attitudes towards fire safety. In T. Ploug, P. Hasle, & H. Oinas-Kukkonen (Eds.), *Persuasive Technology: Lecture Notes in Computer Science* (pp. 58–69). Heidelberg : Springer. http://doi.org/10.1007/978-3-642-13226-1_8
- Chopik, W. J., O'Brien, E., & Konrath, S. H. (2017). Differences in Empathic Concern and Perspective Taking Across 63 Countries. *Journal of Cross-Cultural Psychology*, 48(1), 23–38. http://doi.org/10.1177/0022022116673910
- Chung, M. K., Worsley, K. J., Paus, T., Cherif, C., Collins, D. L., Giedd, J. N., ... Evans, A. C. (2001). A unified statistical approach to deformation-based morphometry. *NeuroImage*, 14(3), 595–606. http://doi.org/10.1006/nimg.2001.0862
- Crocetti, E., Van der Graaff, J., Moscatelli, S., Keijsers, L., Koot, H. M., Rubini, M., ... Branje, S. (2016). A Longitudinal Study on the Effects of Parental Monitoring on Adolescent Antisocial Behaviors: The Moderating Role of Adolescent Empathy. *Frontiers in Psychology*, 7, 1726. http://doi.org/10.3389/fpsyg.2016.01726
- Davatzikos, C., Vaillant, M., Resnick, S. M., Prince, J. L., Letovsky, S., & Bryan, R. N. (1996). A computerized approach for morphological analysis of the corpus callosum. *Journal of Computer Assisted Tomography*, 20(1), 88–97. http://doi.org/10.1097/00004728-199601000-00017
- Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. *Journal of Personality and Social Psychology*, *44*(1), 113–126. http://doi.org/10.1037/0022-3514.44.1.113
- de Vignemont, F., & Singer, T. (2006). The empathic brain: how, when and why? *Trends in Cognitive Sciences*, *10*(10), 435–41. http://doi.org/10.1016/j.tics.2006.08.008
- de Waal, F. B. M. (2008). Putting the Altruism Back into Altruism: The Evolution of Empathy. *Annual Review of Psychology*, *59*(1), 279–300. http://doi.org/10.1146/annurev.psych.59.103006.093625
- Decety, J., & Yoder, K. J. (2015). Empathy and motivation for justice: Cognitive empathy and concern, but not emotional empathy, predict sensitivity to injustice for others. *Social Neuroscience*, *11*(1), 1–14. http://doi.org/10.1080/17470919.2015.1029593

- Desteno, D. (2015). Compassion and altruism: how our minds determine who is worthy of help. *Current Opinion in Behavioral Sciences*, *3*, 80–83. http://doi.org/10.1016/j.cobeha.2015.02.002
- Diemer, J., Alpers, G. W., Peperkorn, H. M., Shiban, Y., & Mühlberger, A. (2015). The impact of perception and presence on emotional reactions: a review of research in virtual reality. *Frontiers in Psychology*, 6, 26. http://doi.org/10.3389/fpsyg.2015.00026
- Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. *Proceedings of the National Academy of Sciences*, 113(28), 7900–7905. http://doi.org/10.1073/pnas.1602413113
- Engen, H., Skottnik, L., Ricard, M., & Singer, T. (2017). Structural brain changes associated with expertise in loving-kindness meditation. *Neuropsychologia*.
- Eres, R., Decety, J., Louis, W. R., & Molenberghs, P. (2015). Individual differences in local gray matter density are associated with differences in affective and cognitive empathy. *NeuroImage*, *117*, 305–310. http://doi.org/10.1016/j.neuroimage.2015.05.038
- Fehr, E., & Schmidt, K. M. (2006). The Economics of Fairness, Reciprocity and Altruism Experimental Evidence and New Theories. In J. M. Kolm, Serge-Christophe Ythier (Ed.), *Handbook of the Economics of Giving, Altruism and Reciprocity* (1st ed., Vol. 1, pp. 615–691). North Holland. http://doi.org/10.1016/S1574-0714(06)01008-6
- FeldmanHall, O., Dalgleish, T., Evans, D., & Mobbs, D. (2015). Empathic concern drives costly altruism. *NeuroImage*, 105, 347–356. http://doi.org/10.1016/j.neuroimage.2014.10.043
- FeldmanHall, O., Dalgleish, T., Evans, D., Navrady, L., Tedeschi, E., & Mobbs, D. (2016). Moral Chivalry: Gender and Harm Sensitivity Predict Costly Altruism. Social Psychological and Personality Science, 7(6), 542–551. http://doi.org/10.1177/1948550616647448
- FeldmanHall, O., Mobbs, D., Evans, D., Hiscox, L., Navrady, L., & Dalgleish, T. (2012). What we say and what we do: the relationship between real and hypothetical moral choices. *Cognition*, *123*(3), 434–41. http://doi.org/10.1016/j.cognition.2012.02.001
- Francis, K. B., Howard, C., Howard, I. S., Gummerum, M., Ganis, G., Anderson, G., & Terbeck, S. (2016). Virtual Morality: Transitioning from Moral Judgment to Moral Action? *PLoS ONE*, *11*(10), e0164374. http://doi.org/10.1371/journal.pone.0164374
- Gaser, C. (2016). Structural MRI: Morphometry. In M. Reuter & C. Montag (Eds.), *Neuroeconomics* (pp. 399–409). Berlin-Heidelberg: Springer. http://doi.org/10.1007/978-3-642-35923-1_21
- Gaser, C., Nenadic, I., Buchsbaum, B. R., Hazlett, E. A., & Buchsbaum, M. S. (2001). Deformation-Based Morphometry and Its Relation to Conventional Volumetry of Brain Lateral Ventricles in MRI. *NeuroImage*, *13*, 1140–1145. http://doi.org/10.1006/nimg.2001.0771
- Gaser, C., Volz, H.-P., Kiebel, S., Riehemann, S., & Sauer, H. (1999). Detecting Structural Changes in Whole Brain Based on Nonlinear Deformations—Application to Schizophrenia Research. *NeuroImage*, 10, 107–113. http://doi.org/10.1006/nimg.1999.0458
- Gęsiarz, F., & Crockett, M. J. (2015). Goal-directed, habitual and Pavlovian prosocial behavior. *Frontiers in Behavioral Neuroscience*, 9, 135. http://doi.org/10.3389/fnbeh.2015.00135
- Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S. S., Maumet, C., ... Margulies, D. S. (2015). NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain. *Frontiers in Neuroinformatics*, 9, 8. http://doi.org/10.3389/fninf.2015.00008

Graham, J., Nosek, B. A., Haidt, J., Iyer, R., Koleva, S., & Ditto, P. H. (2011). Mapping the moral

domain. Journal of Personality and Social Psychology, 101(2), 366–385. http://doi.org/10.1037/a0021847

- Grueter, C. C., Ingram, J. A., Lewisson, J. W., Bradford, O. R., Taba, M., Coetzee, R. E., & Sherwood, M. A. (2016). Human altruistic tendencies vary with both the costliness of selfless acts and socioeconomic status. *PeerJ*, *4*, e2610. http://doi.org/10.7717/peerj.2610
- Habashi, M. M., Graziano, W. G., & Hoover, A. E. (2016). Searching for the Prosocial Personality: A Big Five Approach to Linking Personality and Prosocial Behavior. *Personality & Social Psychology Bulletin*, 42(9), 1177–92. http://doi.org/10.1177/0146167216652859
- Hastings, P. D., Miller, J. G., Kahle, S., & Zahn-Waxler, C. (2013). The Neurobiological Bases of Empathic Concern for Others. In M. Killen & J. G. Smetana (Eds.), *Handbook of Moral Development* (2nd ed., pp. 411–434). New York, NY: Psychology Press. http://doi.org/10.4324/9780203581957.ch19
- Hein, G., Morishima, Y., Leiberg, S., Sul, S., & Fehr, E. (2016). The brain's functional network architecture reveals human motives. *Science*, *351*(6277), 1074–1078. http://doi.org/10.1126/science.aac7992
- Hein, G., Silani, G., Preuschoff, K., Batson, C. D., & Singer, T. (2010). Neural responses to ingroup and outgroup members' suffering predict individual differences in costly helping. *Neuron*, 68(1), 149–160. http://doi.org/10.1016/j.neuron.2010.09.003
- Hu, Y., Strang, S., & Weber, B. (2015). Helping or punishing strangers: neural correlates of altruistic decisions as third-party and of its relation to empathic concern. *Frontiers in Behavioral Neuroscience*, 9, 24. http://doi.org/10.3389/fnbeh.2015.00024
- Hubbard, J., Harbaugh, W. T., Srivastava, S., Degras, D., & Mayr, U. (2016). A general benevolence dimension that links neural, psychological, economic, and life-span data on altruistic tendencies. *Journal of Experimental Psychology: General*, 145(10), 1351–1358. http://doi.org/10.1037/xge0000209
- Immordino-Yang, M. H., McColl, A., Damasio, H., & Damasio, A. (2009). Neural correlates of admiration and compassion. *Proceedings of the National Academy of Sciences*, 106(19), 8021–6. http://doi.org/10.1073/pnas.0810363106
- Jordan, M. R., Amir, D., & Bloom, P. (2016). Are Empathy and Concern Psychologically Distinct? *Emotion*, 16(8), 1107–1116. http://doi.org/10.1037/emo0000228
- Kanske, P., Böckler, A., Trautwein, F.-M., & Singer, T. (2015). Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural networks and brain-behavior relations for empathy and Theory of Mind. *NeuroImage*, *122*, 6–19. http://doi.org/10.1016/j.neuroimage.2015.07.082
- Kawamichi, H., Yoshihara, K., Sugawara, S. K., Matsunaga, M., Makita, K., Hamano, Y. H., ... Sadato, N. (2015). Helping behavior induced by empathic concern attenuates anterior cingulate activation in response to others' distress. *Social Neuroscience*, 11(2), 109–22. http://doi.org/10.1080/17470919.2015.1049709
- Klimecki, O. M., Leiberg, S., Ricard, M., & Singer, T. (2014). Differential pattern of functional brain plasticity after compassion and empathy training. *Social Cognitive and Affective Neuroscience*, 9(6), 873–879. http://doi.org/10.1093/scan/nst060
- Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. *NeuroImage*, 54(3), 2492–502. http://doi.org/10.1016/j.neuroimage.2010.10.014

- Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. *Brain Structure & Function*, 214(5–6), 579–91. http://doi.org/10.1007/s00429-010-0251-3
- Li, H., Nickerson, L. D., Nichols, T. E., & Gao, J.-H. (2016). Comparison of a non-stationary voxelation-corrected cluster-size test with TFCE for group-Level MRI inference. *Human Brain Mapping*. http://doi.org/10.1002/hbm.23453
- Malone, I. B., Leung, K. K., Clegg, S., Barnes, J., Whitwell, J. L., Ashburner, J., ... Ridgway, G. R. (2015). Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance. *NeuroImage*, 104, 366–372. http://doi.org/10.1016/j.neuroimage.2014.09.034
- Maner, J. K., Luce, C. L., Neuberg, S. L., Cialdini, R. B., Brown, S., & Sagarin, B. J. (2002). The Effects of Perspective Taking on Motivations for Helping: Still No Evidence for Altruism. *Personality and Social Psychology Bulletin*, 28(11), 1601–1610. http://doi.org/10.1177/014616702237586
- Marsh, A. (2016). Neural, cognitive, and evolutionary foundations of human altruism. *WIREs Cognitive Science*, 7(1), 59–71. http://doi.org/10.1002/wcs.1377
- Marsh, A., Stoycos, S., Brethel-Haurwitz, K. M., Robinson, P., VanMeter, J., & Cardinale, E. M. (2014). Neural and cognitive characteristics of extraordinary altruists. *Proceedings of the National Academy of Sciences*, 111(42), 15036–41. http://doi.org/10.1073/pnas.1408440111
- Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI investigation of empathy for "social pain" and subsequent prosocial behavior. *NeuroImage*, 55(1), 381–8. http://doi.org/10.1016/j.neuroimage.2010.11.060
- Michael, A. M., Evans, E., & Moore, G. J. (2016). Influence of Group on Individual Subject Maps in SPM Voxel Based Morphometry. *Frontiers in Neuroscience*, 10, 522. http://doi.org/10.3389/fnins.2016.00522
- Mietchen, D., & Gaser, C. (2009). Computational morphometry for detecting changes in brain structure due to development, aging, learning, disease and evolution. *Frontiers in Neuroinformatics*, 3, 25. http://doi.org/10.3389/neuro.11.025.2009
- Morelli, S. A., Rameson, L. T., & Lieberman, M. D. (2014). The neural components of empathy: Predicting daily prosocial behavior. *Social Cognitive and Affective Neuroscience*, 9(1), 39–47. http://doi.org/10.1093/scan/nss088
- Morishima, Y., Schunk, D., Bruhin, A., Ruff, C. C., & Fehr, E. (2012). Linking brain structure and activation in temporoparietal junction to explain the neurobiology of human altruism. *Neuron*, 75(1), 73–79. http://doi.org/10.1016/j.neuron.2012.05.021
- Mutschler, I., Reinbold, C., Wankerl, J., Seifritz, E., & Ball, T. (2013). Structural basis of empathy and the domain general region in the anterior insular cortex. *Frontiers in Human Neuroscience*, 7, 177. http://doi.org/10.3389/fnhum.2013.00177
- Nash, K., Baumgartner, T., & Knoch, D. (2017). Group-focused morality is associated with limited conflict detection and resolution capacity: Neuroanatomical evidence. *Biological Psychology*, 123, 235–240. http://doi.org/10.1016/j.biopsycho.2016.12.018
- Navarrete, C. D., McDonald, M. M., Mott, M. L., & Asher, B. (2012). Virtual morality: emotion and action in a simulated three-dimensional "trolley problem". *Emotion*, 12(2), 364–70. http://doi.org/10.1037/a0025561
- Nook, E. C., Ong, D. C., Morelli, S. A., Mitchell, J. P., & Zaki, J. (2016). Prosocial Conformity: Prosocial Norms Generalize Across Behavior and Empathy. *Personality and Social Psychology Bulletin*, 42(8), 1045–1062. http://doi.org/10.1177/0146167216649932

- O'Brien, L. M., Ziegler, D. A., Deutsch, C. K., Frazier, J. A., Herbert, M. R., & Locascio, J. J. (2011). Statistical adjustments for brain size in volumetric neuroimaging studies: Some practical implications in methods. *Psychiatry Research - Neuroimaging*, *193*(2), 113–122. http://doi.org/10.1016/j.pscychresns.2011.01.007
- Paciello, M., Fida, R., Cerniglia, L., Tramontano, C., & Cole, E. (2013). High cost helping scenario: The role of empathy, prosocial reasoning and moral disengagement on helping behavior. *Personality and Individual Differences*, 55(1), 3–7. http://doi.org/10.1016/j.paid.2012.11.004
- Parsons, T. D. (2015). Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. *Frontiers in Human Neuroscience*, 9, 660. http://doi.org/10.3389/fnhum.2015.00660
- Patil, I., Calò, M., Fornasier, F., Young, L., & Silani, G. (2017). Neuroanatomical correlates of forgiving unintentional harms. *Scientific Reports*.
- Patil, I., Cogoni, C., Zangrando, N., Chittaro, L., & Silani, G. (2014). Affective basis of judgmentbehavior discrepancy in virtual experiences of moral dilemmas. *Social Neuroscience*, 9(1), 94– 107. http://doi.org/10.1080/17470919.2013.870091
- Patil, I., Melsbach, J., Hennig-Fast, K., & Silani, G. (2016). Divergent roles of autistic and alexithymic traits in utilitarian moral judgments in adults with autism. *Scientific Reports*, 6, 23637. http://doi.org/10.1038/srep23637
- Patil, I., & Silani, G. (2014a). Alexithymia increases moral acceptability of accidental harms. *Journal of Cognitive Psychology*, 26(5), 597–614. http://doi.org/10.1080/20445911.2014.929137
- Patil, I., & Silani, G. (2014b). Reduced empathic concern leads to utilitarian moral judgments in trait alexithymia. *Frontiers in Psychology*, *5*, 501. http://doi.org/10.3389/fpsyg.2014.00501
- Persson, B. N., & Kajonius, P. J. (2016). Empathy and universal values explicated by the empathyaltruism hypothesis. *The Journal of Social Psychology*, *156*(6), 610–619. http://doi.org/10.1080/00224545.2016.1152212
- Peysakhovich, A., Nowak, M. A., & Rand, D. G. (2014). Humans display a "cooperative phenotype" that is domain general and temporally stable. *Nature Communications*, *5*, 4939. http://doi.org/10.1038/ncomms5939
- Prehn, K., Korczykowski, M., Rao, H., Fang, Z., Detre, J. a., & Robertson, D. C. (2015). Neural Correlates of Post-Conventional Moral Reasoning: A Voxel-Based Morphometry Study. *PLoS ONE*, 10(6), e0122914. http://doi.org/10.1371/journal.pone.0122914
- Preston, S. D. (2013). The origins of altruism in offspring care. *Psychological Bulletin*, *139*(6), 1305–41. http://doi.org/10.1037/a0031755
- Rand, D. G., & Epstein, Z. G. (2014). Risking Your Life without a Second Thought: Intuitive Decision-Making and Extreme Altruism. *PLoS ONE*, 9(10), e109687. http://doi.org/10.1371/journal.pone.0109687
- Roiser, J. P., Linden, D. E., Gorno-Tempinin, M. L., Moran, R. J., Dickerson, B. C., & Grafton, S. T. (2016). Minimum statistical standards for submissions to Neuroimage: Clinical. *NeuroImage: Clinical*, 12, 1045–1047. http://doi.org/10.1016/j.nicl.2016.08.002
- Rosenberg, R. S., Baughman, S. L., & Bailenson, J. N. (2013). Virtual superheroes: using superpowers in virtual reality to encourage prosocial behavior. *PLoS ONE*, 8(1), e55003. http://doi.org/10.1371/journal.pone.0055003
- Ru, W., Fang, P., Wang, B., Yang, X., Zhu, X., Xue, M., ... Gong, P. (2017). The impacts of

Val158Met in Catechol-O-methyltransferase (COMT) gene on moral permissibility and empathic concern. *Personality and Individual Differences*, *106*, 52–56. http://doi.org/10.1016/j.paid.2016.10.041

- Salimi-Khorshidi, G., Smith, S. M., & Nichols, T. E. (2011). Adjusting the effect of nonstationarity in cluster-based and TFCE inference. *NeuroImage*, 54(3), 2006–2019. http://doi.org/10.1016/j.neuroimage.2010.09.088
- Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. *Nature Reviews Neuroscience*, 6(4), 332–339. http://doi.org/10.1038/nrn1651
- Sassenrath, C., Pfattheicher, S., & Keller, J. (2017). I might ease your pain, but only if you're sad: The impact of the empathized emotion in the empathy-helping association. *Motivation and Emotion*, 41(1), 96–106. http://doi.org/10.1007/s11031-016-9586-2
- Scarpazza, C., Nichols, T. E., Seramondi, D., Maumet, C., Sartori, G., & Mechelli, A. (2016). When the Single Matters more than the Group (II): Addressing the Problem of High False Positive Rates in Single Case Voxel Based Morphometry Using Non-parametric Statistics. *Frontiers in Neuroscience*, 10, 6. http://doi.org/10.3389/fnins.2016.00006
- Scarpazza, C., Sartori, G., De Simone, M. S., & Mechelli, A. (2013). When the single matters more than the group: very high false positive rates in single case Voxel Based Morphometry. *NeuroImage*, 70, 175–88. http://doi.org/10.1016/j.neuroimage.2012.12.045
- Scarpazza, C., Tognin, S., Frisciata, S., Sartori, G., & Mechelli, a. (2015). False positive rates in Voxel-based Morphometry studies of the human brain: Should we be worried? *Neuroscience & Biobehavioral Reviews*, 52, 49–55. http://doi.org/10.1016/j.neubiorev.2015.02.008
- Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The Experience of Presence: Factor Analytic Insights. *Presence*, *10*(3), 266–281. http://doi.org/10.1162/105474601300343603
- Shaver, P. R., Mikulincer, M., Gross, J. T., Stern, J. A., & Cassidy, J. (2016). A lifespan perspective on attachment and care for others: Empathy, altruism, and prosocial behavior. In *Handbook of Attachment: Theory, Research, and Clinical Applications* (3rd ed., pp. 878–916). Guilford Press.
- Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. *Psychological Science*, 22(11), 1359–1366. http://doi.org/10.1177/0956797611417632
- Simon-Thomas, E. R., Godzik, J., Castle, E., Antonenko, O., Ponz, A., Kogan, A., & Keltner, D. J. (2012). An fMRI study of caring vs self-focus during induced compassion and pride. *Social Cognitive and Affective Neuroscience*, 7(6), 635–648. http://doi.org/10.1093/scan/nsr045
- Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. *Current Biology*, 24(18), R875-8. http://doi.org/10.1016/j.cub.2014.06.054
- Skulmowski, A., Bunge, A., Kaspar, K., & Pipa, G. (2014). Forced-choice decision-making in modified trolley dilemma situations: a virtual reality and eye tracking study. *Frontiers in Behavioral Neuroscience*, 8, 426. http://doi.org/10.3389/fnbeh.2014.00426
- Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. *NeuroImage*, 44(1), 83– 98. http://doi.org/10.1016/j.neuroimage.2008.03.061
- Steinbeis, N., Bernhardt, B., & Singer, T. (2012). Impulse Control and Underlying Functions of the Left DLPFC Mediate Age-Related and Age-Independent Individual Differences in Strategic Social Behavior. *Neuron*, 73(5), 1040–1051. http://doi.org/10.1016/j.neuron.2011.12.027

- Stocks, E. L., López-Pérez, B., & Oceja, L. V. (2017). Can't get you out of my mind: empathy, distress, and recurring thoughts about a person in need. *Motivation and Emotion*, 41(1), 84–95. http://doi.org/10.1007/s11031-016-9587-1
- Swain, J. E., Konrath, S., Brown, S. L., Finegood, E. D., Akce, L. B., Dayton, C. J., & Ho, S. S. (2012). Parenting and Beyond: Common Neurocircuits Underlying Parental and Altruistic Caregiving. *Parenting, Science and Practice*, 12(2–3), 115–123. http://doi.org/10.1080/15295192.2012.680409
- Teper, R., Inzlicht, M., & Page-Gould, E. (2011). Are we more moral than we think? Exploring the role of affect in moral behavior and moral forecasting. *Psychological Science*, 22(4), 553–8. http://doi.org/10.1177/0956797611402513
- Teper, R., Tullett, A., Page-Gould, E., & Inzlicht, M. (2015). Errors in Moral Forecasting: Perceptions of Affect Shape the Gap Between Moral Behaviors and Moral Forecasts. *Personality and Social Psychology Bulletin*, *41*(7), 887–900. http://doi.org/10.1177/0146167215583848
- Tusche, A., Bockler, A., Kanske, P., Trautwein, F.-M., & Singer, T. (2016). Decoding the Charitable Brain: Empathy, Perspective Taking, and Attention Shifts Differentially Predict Altruistic Giving. *Journal of Neuroscience*, 36(17), 4719–4732. http://doi.org/10.1523/JNEUROSCI.3392-15.2016
- Valk, S., Bernhardt, B., Böckler, A., Trautwein, F.-M., Kanske, P., & Singer, T. (2016). Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks. *Cerebral Cortex*. http://doi.org/10.1093/cercor/bhv319
- Vovk, U., Pernuš, F., & Likar, B. (2007). A review of methods for correction of intensity inhomogeneity in MRI. *IEEE Transactions on Medical Imaging*, 26(3), 405–421. http://doi.org/10.1109/TMI.2006.891486
- Vul, E., & Pashler, H. (2017). Suspiciously high correlations in brain imaging research. In S. O. Lilienfeld & I. D. Waldman (Eds.), *Psychological science under scrutiny: Recent challenges and proposed solutions* (pp. 196–220). New York: Wiley.
- Wang, J., Jiang, T., Cao, Q., & Wang, Y. (2007). Characterizing anatomic differences in boys with attention-deficit/hyperactivity disorder with the use of deformation-based morphometry. *AJNR*. *American Journal of Neuroradiology*, 28(3), 543–7.
- Watanabe, T., Takezawa, M., Nakawake, Y., Kunimatsu, A., Yamasue, H., Nakamura, M., ... Masuda, N. (2014). Two distinct neural mechanisms underlying indirect reciprocity. *Proceedings of the National Academy of Sciences*, 111(11), 3990–5. http://doi.org/10.1073/pnas.1318570111
- Wilhelm, M. O., & Bekkers, R. (2010). Helping Behavior, Dispositional Empathic Concern, and the Principle of Care. *Social Psychology Quarterly*, 73(1), 11–32. http://doi.org/10.1177/0190272510361435
- Winczewski, L. A., Bowen, J. D., & Collins, N. L. (2016). Is Empathic Accuracy Enough to Facilitate Responsive Behavior in Dyadic Interaction? Distinguishing Ability From Motivation. *Psychological Science*, 27(3), 394–404. http://doi.org/10.1177/0956797615624491
- Winking, J., & Mizer, N. (2013). Natural-field dictator game shows no altruistic giving. *Evolution and Human Behavior*, *34*(4), 288–293. http://doi.org/10.1016/j.evolhumbehav.2013.04.002
- Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. *Presence*, 7(3), 225–240. http://doi.org/10.1162/105474698565686
- Woo, C. W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI

analyses: Pitfalls and recommendations. *NeuroImage*, *91*, 412–419. http://doi.org/10.1016/j.neuroimage.2013.12.058

- Yamagishi, T., Takagishi, H., Fermin, A. de S. R., Kanai, R., Li, Y., & Matsumoto, Y. (2016). Cortical thickness of the dorsolateral prefrontal cortex predicts strategic choices in economic games. *Proceedings of the National Academy of Sciences*, 113(20), 5582–5587. http://doi.org/10.1073/pnas.1523940113
- Yarkoni, T., Poldrack, R., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. *Nature Methods*, 8(8), 665–70. http://doi.org/10.1038/nmeth.1635
- Yue, T., Pan, W., & Huang, X. (2016). The relationship between trait positive empathy and brain structure: a voxel-based morphometry study. *Neuroreport*, 27(6), 422–6. http://doi.org/10.1097/WNR.00000000000557
- Zahn, R., de Oliveira-Souza, R., Bramati, I., Garrido, G., & Moll, J. (2009). Subgenual cingulate activity reflects individual differences in empathic concern. *Neuroscience Letters*, 457(2), 107–110. http://doi.org/10.1016/j.neulet.2009.03.090
- Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2014). Brain activity and prosocial behavior in a simulated life-threatening situation. *NeuroImage*, *98*, 134–146. http://doi.org/10.1016/j.neuroimage.2014.04.053

Supplementary Information for "Neuroanatomical basis of concern-based altruism in virtual environment"

Indrajeet Patil^{1,2™}, Marco Zanon^{3*}, Giovanni Novembre^{4*}, Nicola Zangrando⁵, Luca Chittaro⁵, Giorgia Silani⁶

¹Scuola Internazionale Superiore di Studi Avanzati, Neuroscience Sector, Trieste, Italy.
 ²Department of Psychology, Harvard University, Cambridge, MA, USA.
 ³Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Italy.

⁴Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden

⁵Human-Computer Interaction Lab, Department of Mathematics, Computer Science, and Physics, University of Udine, Udine, Italy.

⁶Department of Applied Psychology: Health, Development, Enhancement and Intervention, University of Vienna, Vienna, Austria.

*These authors contributed equally to this work.

 $^{\square}$ Correspondence should be addressed to:

Indrajeet Patil, 33 Kirkland Street, Cambridge, Massachusetts, 02138, USA.

E-mail: patilindrajeet.science@gmail.com

Abbreviations: AI = anterior insula, DBM = deformation-based morphometry, EC = empathic concern,

VR = virtual reality

Supplementary Text S1: Role of empathic concern in prosocialilty and altruism

A large amount of evidence is available in support of the claim that EC motivates the observer to relieve the target of his/her distress. Sympathetic concern for others promotes costly helping behavior in accordance with one's own sense of responsibility and is also associated with reduced moral disengagement and aggression (Carlo, Mestre, Samper, Tur, & Armenta, 2010; Paciello, Fida, Cerniglia, Tramontano, & Cole, 2013), probably via reappraising aversive arousal stemming from distress (Kawamichi et al., 2015; Lebowitz & Dovidio, 2015; Levy-Gigi & Shamay-Tsoory, 2017; Lockwood, Seara-Cardoso, & Viding, 2014). This relationship between EC and prosocial behavior holds across diverse cultures (across 63 countries; Chopik, O'Brien, & Konrath, 2016) and across states in US (Bach, Defever, Chopik, & Konrath, 2016). Real-life extraordinary altruists, individuals who have donated a kidney to a complete stranger, also score high only on self-report measures of EC (Brethel-Haurwitz, Stoycos, Cardinale, Huebner, & Marsh, 2016). EC also loads on the broader second-order general benevolence factor that represents an underlying dimension of personality tracking pure altruism (Hubbard, Harbaugh, Srivastava, Degras, & Mayr, 2016). This general other-regarding concern is also associated with higher donations to charitable causes (Tusche, Bockler, Kanske, Trautwein, & Singer, 2016) and more cooperative behavior that maximizes economic benefits for the group (Jordan, Amir, & Bloom, 2016). Situational EC response stemming from victim suffering is associated with anticipated recurring thoughts about victim's unpleasant situation (Stocks, López-Pérez, & Oceja, 2017). EC is also found to be strongly correlated with greater endorsement of harm moral foundation, which indexes our evolutionarily acquired concern for the protection of other people's physical integrity (Graham et al., 2011). In the same vein, individuals with higher self-reported EC are less likely to endorse personally harming others for the greater good in moral dilemmas (Patil, Melsbach, Hennig-Fast, & Silani, 2016; Patil & Silani, 2014b) and also condemn more harshly unintentionally caused harmful outcomes (Patil & Silani, 2014a). Individuals with higher EC prefer compensating victim over punishing perpetrator (Hu, Strang, & Weber, 2015) and profess higher other-oriented justice sensitivity for victims of harmful behavior (Decety & Yoder, 2015). Among the Big Five dimensions of personality, agreeableness is most closely associated with emotional reactions to victims in need of help, and subsequent decisions to help those individuals and EC act as a mediator between agreeableness and helping behavior (Habashi, Graziano, & Hoover, 2016). The relationship between EC and charitable giving is mediated by moral principle of care, i.e. internalized moral value that one should help those in need (Bekkers & Ottoni-Wilhelm, 2016; Wilhelm & Bekkers, 2010), but some studies also implicate nonaltruistic motivators (oneness and negative affect) as mediators of this link (Maner et al., 2002). Empathic accuracy (the cognitive ability to accurately infer another person's internal state) can lead to prosocial response only in the presence of caring motivation measured as EC (Winczewski, Bowen, & Collins, 2016). Thus, there is plenty of evidence to support the claim that a general other-oriented concern is a strong motivator for people to act in prosocial or altruistic manner (Batson, 2011).

On the other hand, empathy (as narrowly defined, see the main text) has been assessed with the personal distress (PD) subscale of IRI and represents a self-oriented aversive arousal state stemming from witnessing or imagining victim distress (Jordan et al., 2016). PD is associated with anticipated recurring thoughts about victim (Stocks et al., 2017), which can either not lead to any prosocial response or can even inhibit such a response (Jordan et al., 2016). This is also consistent with work showing that PD tends to be positively correlated with the tendency to disengage from morally demanding situations, which further reduces propensity to help (Paciello et al., 2013). Extraordinary altruists do not differ from controls on the selfreport measures of PD (Brethel-Haurwitz et al., 2016). Additionally, PD does not predict altruistic choice of giving up one's monetary payoff to reduce painful shocks for others (FeldmanHall, Dalgleish, Evans, & Mobbs, 2015). The presence of bystanders during an emergency can reduce action preparation, as assessed by corticospinal excitability, in people with a disposition to experience high PD in demanding situations (Hortensius, Schutter, & de Gelder, 2016). But there is also some evidence that suggests that empathy can sometimes promote prosocial behavior (Hein, Lamm, Brodbeck, & Singer, 2011; Tomova et al., 2016), especially in situations where cost is low and helping can be an easy way to alleviate the empathic distress stemming from watching someone suffer (Batson, O'Quin, Fultz, Vanderplas, & Isen, 1983; Batson & Shaw, 1991; Graziano, Habashi, Sheese, & Tobin, 2007; Neuberg et al., 1997).

Thus, although there is overwhelming evidence to support the association between empathic concern and altruistic behavior, the role of empathy or personal distress in motivating prosocial behavior remains to be thoroughly investigated (Bloom, 2016, 2017) and further inquiry will require more refined psychometric instruments (Jordan et al., 2016).

Supplementary Text S2: Presence in VR

A crucial point in experiments implementing virtual environments (VEs) is the subjective experience felt by the participant in the VR (Schubert, Friedmann, & Regenbrecht, 2001; Witmer & Singer, 1998). Indeed, the sense of presence may determine the way participants behave in the VR, resulting in a confounding effect that should be taken into account. That is, this analysis should help dispel the alternative explanation that non-altruists behaved this way because they found the VR to be more realistic and engaging than altruists.

Questionnaire:

The findings reported in a previous study, where the current VR task was validated, seems to exclude this possibility (Zanon, Novembre, Zangrando, Chittaro, & Silani, 2014). Forty-three participants completed the iGroup Presence Questionnaire (IPQ: <u>http://www.igroup.org/pq/ipq/index.php</u>; Schubert, Friedmann, & Regenbrecht, 2001), a 14-item self-report scale, subdivided in 3 independent dimensions of the VR experience and a general item (listed along with one example item)-

- *General presence* (1 item; *G*): "In the computer-generated world I had a sense of 'being there'": This is regarded as a necessary mediator that allows real emotions to be activated by a virtual environment.
- *Spatial presence* (5 items): "Somehow I felt that the virtual world surrounded me.": This indexes the degree of the sense of being physically present in VR.
- *Involvement* (4 items): "I was completely captivated by the virtual world.": This gauges the amount of attention focused on VR and the involvement experienced.
- *Experienced realism* (4 items): "How real did the virtual world seem to you?": This is the subjective rating of realism of a virtual environment.

All IPQ items are statements and respondents have to rate their degree of agreement on a 7-point Likert scale, ranging from -3 to +3.

Results:

On average, participants didn't find themselves to be completely involved in the VR, possibly because we did not use immersive VR with a head-mounted display. But the Bayes Factor¹ values show that the evidence was inconclusive, so there is possibility that we were underpowered to find this effect. Participants did exhibit a good degree of spatial and general presence. Even with our best efforts to create as realistic of an environment as possible, the participants' subjective realism ratings revealed that there was a lot of variation in how realistic different participants found the virtual environment to be. But most important issue for us was whether altruists and non-altruists differed from each other on any of these components of VR which could complicate our interpretation behind group differences.

¹ When traditional null hypothesis testing results in a failure to reject the null hypothesis (H0), this can't be taken as evidence in support of the null hypothesis because p-values are unable to quantify support in favor of the H0 (Wagenmakers, 2007). Therefore, Bayes Factors (BF) were calculated for group comparisons to assess the relative likelihood of the null and alternative (H1) hypotheses (Jarosz & Wiley, 2014). A BF₀₁ of greater than 1 implies that the data are more likely to occur under H0 than under H1. Similarly, a BF₀₁ lower than 1 indicates that the data are more likely to occur under H0. Thus, if we analyze data and find that BF₀₁ = 3, this means that the data are 3 times more likely to have occurred under H0 than under H1. Based on prior guidelines (Etz & Vandekerckhove, 2016), BFs between 1 and 3, between 3 and 10, and larger than 10 are interpreted as ambiguous, moderate, and strong support, respectively.

IPQ subscale	t	16	р	BF ₁₀	Cohen's d	95% CI	
		aj				Lower	Upper
involvement	1.331	42	0.190	0.375	0.203	-0.135	0.658
spatial presence	3.903	42	< .001	79.151	0.595	0.346	1.087
experimental realism	-4.243	42	< .001	204.11	-0.647	-1.072	-0.381
general presence	2.066	42	0.045	1.131	0.315	0.012	1.011

Table S1. Results from one-sample *t*-test on subscales of IPQ

A multivariate analysis of variance (MANOVA) with group (altruistic, non-altruistic) as between-subject factor and IPQ subscale scores as the dependent variables showed no differences between participants who stopped and helped (or tried to help) the trapped humanoid and those who passed by, without helping on the three subscales and the general item of IPQ. Thus, it is unlikely that altruists were more willing to help (compared to non-altruists) the trapped humanoid in the virtual world because they didn't find the VR to be realistic enough and thus the situation wasn't threatening enough for them.

Table S2. Multivariate tests on self-reported questionnaires and the three scales evaluating the emotional state of the participants

	Wilks λ	F	df	Error df	р	${\eta_p}^2$
IPQ	0.834	1.889	4	38	0.132	0.166

Note: IPQ = Igroup Presence Questionnaire.

Table S3. Comparison of group scores (Mean (SE)) on the three subscales of the Igroup Presence

 Questionnaire (IPQ) and the general sense of presence item.

	Involuement	Spotial processo	Experienced realism	General sense of	
	involvement	Spatial presence	Experienced realism	experience	
Altruistic	0.04 (0.26)	0.74 (0.25)	-0.69 (0.23)	0.83 (0.33)	
Non-altruistic	0.54 (0.29)	0.68 (0.28)	-0.78 (0.26)	0.11 (0.37)	

Figure S2. Full distribution of scores for subscales of iGroup Presence Questionnare are shown using combination of box and violin plots (Allen, Erhardt, & Calhoun, 2012). Box plot within the violin plot contains thick black line for the median and the box indicates the interquartile range, while the added rotated kernel density plot shows the probability density of the data at different values.

The same results were obtained even in simple comparisons (both parametric and non-parametric) between altruists and non-altruists for each subscale of IPQ-

IPQ Subscale	Test	statistic	df	р	Mean Difference	SE Difference	Cohen's d
involvement	Student's	-1.267	41	0.212	-0.498	0.394	-0.389
	Welch's	-1.265	38.53	0.213	-0.498	0.394	-0.389
spatial presence	Student's	0.154	41	0.879	0.057	0.381	0.047
	Welch's	0.151	35.58	0.881	0.057	0.381	0.047
experimental realism	Student's	0.255	41	0.800	0.089	0.352	0.078
	Welch's	0.253	37.48	0.802	0.089	0.352	0.078
general presence	Student's	1.481	41	0.146	0.728	0.511	0.455
	Welch's	1.424	31.39	0.164	0.728	0.511	0.455
Total	Student's	0.284	41	0.778	0.377	1.367	0.087
	Welch's	0.275	32.92	0.785	0.377	1.367	0.087

Table S4. Comparisons between altruists and non-altruists on the IPQ subscales.

Supplementary Text S3: Analysis and results for the PT and PD subscales of IRI

For the sake of completeness, here we provide details for the analysis focusing on subscales of IRI apart from EC, which was the main focus of hypothesis-driven study.

Measurement:

All participants completed Interpersonal Reactivity Inventory (IRI; Davis, 1983), a 28-item self-report questionnaire with four 7-item subscales, that was used to assess specific aspects of dispositional empathy. Participants reported agreement with statements on a 5-point Likert scale (1: *never true for me*, 5: *always true for me*). Apart from the EC, the other three subscales consisted of:

- fantasy scale (F), which measures the propensity to identify with fictional characters (e.g., "I really get involved with the feelings of the characters in a novel.", Cronbach's $\alpha = 0.788$);
- perspective taking (PT) scale, which measures the tendency to take the psychological point of view of others (e.g., "I try to understand my friends better by imagining how things look from their perspective.", $\alpha = 0.799$);

• personal distress (PD) scale, which measures the *self-oriented* tendency to feel personal unease and discomfort in reaction to the emotions of others (e.g., "I sometimes feel helpless when I am in the middle of a very emotional situation.", $\alpha = 0.843$).

Based on recent psychometric assessments of the IRI questionnaire (Baldner & McGinley, 2014), we decided *a priori* not to explore the fantasy subscale beyond descriptive statistics, as it does not map well onto the current theorizations of empathy (Decety & Cowell, 2014).

Behavioral analysis:

The altruists and non-altruists did not differ on self-reported PT (altruist: 3.495, non-altruist: 3.363; t(67.08) = 0.972, p = 0.334, d = 0.213) and PD (altruist: 2.745, non-altruist: 2.723; t(48.27) = 0.144, p = 0.886, d = 0.035) (see the Figure S2).

Figure S3. Full distribution of scores for IRI subscale PT, F, and PD are shown using combination of box and violin plots (Allen et al., 2012). Box plot within the violin plot contains thick black line for the median and the box indicates the interquartile range, while the added rotated kernel density plot shows the probability density of the data at different values.

DBM analysis:

As with the EC subscale of IRI, for creating similar masks for PT and PD *separately*, we used multiple regression model, which included age, age² (to model quadratic effects of age), and gender as nuisance covariates in addition to the predictor of interest. These masks included voxels that tracked interindividual variation in self-reported EC in the positive direction, i.e. increased PT or PD associated with expanded regions.

The volume change maps for subjects in each group were analyzed with a two-sample *t*-test, with age, age², and gender included as nuisance covariates (O'Brien et al., 2011). The DBM was carried out at the wholebrain level using the PT or PD mask, i.e. by restricting analysis only to the voxels which were associated with variation in dispositional PT or PD, in order to avoid stringent threshold for multiple comparison. This analysis did not reveal any suprathreshold voxels, even at a more liberal threshold (p(uncorrected) < 0.001).

Supplementary Text S4: EC mask

The regression analysis revealed the regions that showed positive association with trait EC (p < 0.001, k > 10, Table 1), i.e. higher EC was associated enlargement of the following areas, and were included in the EC mask.

Table S5. Regions that showed enlargement with increasing levels of self-reported empathic concern.

Degion Label	Extent (k)	t volue	MNI coordinates			
Region Laber		<i>t</i> -value	x	у	z	
L Middle Frontal Gyrus	14	4.698	-33	41	43	
R Superior Medial Gyrus	22	4.613	4	35	55	
L Superior Medial Gyrus	13	4.039	2	59	17	
R Posterior-Medial Frontal	17	3.913	4	19	65	
Cerebellar Vermis (4/5)	30	3.869	2	-60	3	
Cerebellar Vermis (6)	17	3.812	4	-76	-10	
R IFG (pars Opercularis)	10	3.542	52	9	23	
R Insula Lobe	10	3.398	44	17	-10	

Although all of these regions were included in the mask, we *a priori* expected effects at the insular lobe in the light of prior work. Previous morphometry studies have revealed a positive association between self-reported EC scores and various morphometry measures of insula-

(*i*) the grey matter volume of the AI (Banissy, Kanai, Walsh, & Rees, 2012; Eres, Decety, Louis, & Molenberghs, 2015; Mutschler, Reinbold, Wankerl, Seifritz, & Ball, 2013; Yue, Pan, & Huang, 2016),

(ii) increased insular-opercular cortical thickness (Valk et al., 2016),

(*iii*) higher structural covariance between dorsal AI and prefrontal-limbic regions (Bernhardt, Klimecki, Leiberg, & Singer, 2014).

Additionally, patients with insular damage due to glioma score less on self-report measures of EC than patients with non-insular glioma and healthy controls (Chen et al., 2016). Thus, although the second-level analysis was carried out on the entire mask, we a priori expected effect in the insular lobe.

Supplementary Text S5: Online survey

The online survey was conducted to test our hypothesis that the null effect we found with regards to the EC scores across two groups in the lab-based study was due to a combined effect of small sample size and a dichotomous measure (altruist versus non-altruist). In the online survey, we tested this hypothesis by recruiting a larger sample size and a continues Likert-scale.

Methods:

After the DBM study was completed, we also carried out an additional small-scale online survey using Google forms. This survey had two objectives, one of primary importance and another more ancillary:

1. Our primary objective behind this survey was to assess the validity of our claim that VR paradigm was more naturally realistic than its hypothetical analog. If this assertion is true, then we should see that participants' *judgments* about how they would behave in such scenarios would be misaligned with the *behavior* in VR (FeldmanHall et al., 2012; Francis et al., 2016; Patil, Cogoni, Zangrando, Chittaro, & Silani, 2014). Such judgment-behavior discrepancy would again speak to the advantage of using more lifelike situations to get more realistic responses from participants in situations involving harm, fatal risk, and danger that are ethically impossible to recreate in lab settings.

2. Our ancillary objective was to see if the relationship between EC and altruistic tendency, which has been observed numerous times in the past literature but not found in the DBM study with a dichotomous measure, was observed if Likert-type rating scale was used.

This survey was completed by 129 new volunteers (96 females, age = 26.03 ± 5.99). Participants read the following scenario-

"Imagine to wake up to a loud noise, the ground shaking under your feet, and realize that there is an earthquake in progress. You immediately proceed to evacuate the building. You run down the stairway, constantly coughing from the dust you are inhaling, and reach the first floor and suddenly come across a man trapped under a heavy cabinet. This person can see you and is begging you for help. You are indeed strong enough to remove the cabinet and free this person. But you also recognize that stopping to help this man can potentially put your own life in danger, because the upper floors of the building are dangerously close to collapsing." Note that the situation was modified (the cause that prompts the evacuation is an earthquake) to be emotionally more salient and ecologically more valid to our Italian participants in the wake of the devastating earthquake that hit Central Italy on 24 August 2016 (note that participants were not victims of that earthquake but had been exposed to the extensive media coverage that the disaster received in Italy). Participants then responded to two questions:

[a] behavior forecast: Would you stop to help this man? (Yes/No)

[b] *permissibility*: How morally permissible will it be for you to not stop to help this person in order to save your own life? (1: *not at all permissible*, 10: *completely permissible*).

Next, participants completed four items from the abbreviated and Italian-validated version of the IRI (Ingoglia, Lo Coco, & Albiero, 2016) to index trait EC ($\alpha = 0.786$).

Results:

In the online text-based survey, most participants (117/129) said that they would stop to help the trapped person, while only a few said they would not (12/129) ($\chi^2(1) = 85.465$, p < 0.001). As in the DBM study, no difference in EC scores was observed between altruists and non-altruists (altruist: 3.863, non-altruist: 3.583; Welch's *t*-test: t(13.23) = 1.335, d = 0.414, p = 0.204).

As expected, there was a significant correlation between EC and continuous moral permissibility ratings (Pearson's r = -0.208, p = 0.018; Spearman's $\rho = -0.176$, p = 0.046; see the correlation plot below), such that participants scoring high on EC found it less morally acceptable not to help the person in need to save their own life.

Figure S4. Correlation plot for permissibility ratings and scores on EC subscale of IRI, along with the density plot for the variables.

Combined data:

We also carried out exploratory analysis combining data from lab-based and online experiments to assess the oft-observed judgment-behavior discrepancy (Camerer & Mobbs, 2017; FeldmanHall et al., 2012; Francis et al., 2016; Patil et al., 2014; Teper, Tullett, Page-Gould, & Inzlicht, 2015) in the moral domain.

We combined EC data from both studies to see if altruists differed from non-altruists on EC scores (see the figure below). A linear mixed-effects model with fixed and random effects for the experiment (DBM study, online survey) and response (altruistic, non-altruistic) factors revealed a marginally significant effect for response (estimate = 0.1934, F(1,209) = 2.914, p = 0.089) with altruists (3.786) scoring higher than non-altruists (3.592), but no effect of experiment (p = 0.13).

Additionally, we also checked if participants exhibited judgment-behavior discrepancy (FeldmanHall et al., 2012; Francis et al., 2016; Patil et al., 2014; Teper et al., 2015), such that they judged that they would act in an altruistic manner more frequently than they actually did in the VR environment. Indeed, most participants (91%) predicted that they would act in an altruistic manner in the text-based online survey, but fewer (65%) exhibited this behavior in a contextually salient setting ($\chi^2(1) = 21.070$, p < 0.001, $\phi = 0.318$). Note that these two groups were from different studies with slightly different stimuli and this exploratory analysis was carried out only to demonstrate the previously observed judgment-behavior discrepancy.

Figure S5. (*a*) The scatterplot for the combined dataset from online and lab-based studies shows that participants who made altruistic choices also reported to have greater dispositional EC for others. Error bars represent the standard deviation. (*b*) The pie chart shows that the percentage of participants who chose the altruistic response in the text-based hypothetical scenario (judgment condition: 91%) was significantly higher than that of participants choosing to behave in an altruistic manner in a contextually salient virtual reality (VR) environment (behavior condition: 65%).

References

- Allen, E. A., Erhardt, E. B., & Calhoun, V. D. (2012). Data visualization in the neurosciences: overcoming the curse of dimensionality. *Neuron*, 74(4), 603–8. http://doi.org/10.1016/j.neuron.2012.05.001
- Bach, R., Defever, A. M., Chopik, W. J., & Konrath, S. (2016). Geographic variation in empathy: A statelevel analysis. *Journal of Research in Personality*. http://doi.org/10.1016/j.jrp.2016.12.007
- Baldner, C., & McGinley, J. J. (2014). Correlational and exploratory factor analyses (EFA) of commonly used empathy questionnaires: New insights. *Motivation and Emotion*, *38*(5), 727–744. http://doi.org/10.1007/s11031-014-9417-2
- Banissy, M. J., Kanai, R., Walsh, V., & Rees, G. (2012). Inter-individual differences in empathy are reflected in human brain structure. *NeuroImage*, 62(3), 2034–2039. http://doi.org/10.1016/j.neuroimage.2012.05.081
- Batson, C. D. (2011). *Altruism in Humans* (1st ed.). New York, NY: Oxford University Press. http://doi.org/10.1093/acprof:oso/9780195341065.001.0001
- Batson, C. D., O'Quin, K., Fultz, J., Vanderplas, M., & Isen, A. M. (1983). Influence of self-reported distress and empathy on egoistic versus altruistic motivation to help. *Journal of Personality and Social Psychology*, *45*(3), 706–718. http://doi.org/10.1037/0022-3514.45.3.706
- Batson, C. D., & Shaw, L. L. (1991). Evidence for Altruism: Toward a Pluralism of Prosocial Motives. *Psychological Inquiry*, 2(2), 107–122. http://doi.org/10.1207/s15327965pli0202_1
- Bekkers, R., & Ottoni-Wilhelm, M. (2016). Principle of Care and Giving to Help People in Need. *European Journal of Personality*, 30(3), 240–257. http://doi.org/10.1002/per.2057
- Bernhardt, B., Klimecki, O. M., Leiberg, S., & Singer, T. (2014). Structural covariance networks of the dorsal anterior insula predict females' individual differences in empathic responding. *Cerebral Cortex*, 24(8), 2189–98. http://doi.org/10.1093/cercor/bht072
- Bloom, P. (2016). Against Empathy: The Case for Rational Compassion (1st ed.). Ecco.
- Bloom, P. (2017). Empathy and Its Discontents. *Trends in Cognitive Sciences*, 21(1), 24–31. http://doi.org/10.1016/j.tics.2016.11.004
- Brethel-Haurwitz, K. M., Stoycos, S. A., Cardinale, E. M., Huebner, B., & Marsh, A. (2016). Is costly punishment altruistic? Exploring rejection of unfair offers in the Ultimatum Game in real-world altruists. *Scientific Reports*, 6, 18974. http://doi.org/10.1038/srep18974
- Camerer, C., & Mobbs, D. (2017). Differences in Behavior and Brain Activity during Hypothetical and Real Choices. *Trends in Cognitive Sciences*, 21(1), 46–56. http://doi.org/10.1016/j.tics.2016.11.001
- Carlo, G., Mestre, M. V., Samper, P., Tur, A., & Armenta, B. E. (2010). Feelings or cognitions? Moral cognitions and emotions as longitudinal predictors of prosocial and aggressive behaviors. *Personality and Individual Differences*, 48(8), 872–877. http://doi.org/10.1016/j.paid.2010.02.010
- Chen, P., Wang, G., Ma, R., Jing, F., Zhang, Y., Wang, Y., ... Zhang, X. (2016). Multidimensional assessment of empathic abilities in patients with insular glioma. *Cognitive, Affective, & Behavioral Neuroscience, 16*(5), 962–975. http://doi.org/10.3758/s13415-016-0445-0

- Chopik, W. J., O'Brien, E., & Konrath, S. H. (2017). Differences in Empathic Concern and Perspective Taking Across 63 Countries. *Journal of Cross-Cultural Psychology*, 48(1), 23–38. http://doi.org/10.1177/0022022116673910
- Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. *Journal of Personality and Social Psychology*, *44*(1), 113–126. http://doi.org/10.1037/0022-3514.44.1.113
- Decety, J., & Cowell, J. M. (2014). Friends or Foes: Is Empathy Necessary for Moral Behavior? *Perspectives on Psychological Science*, 9(5), 525–537. http://doi.org/10.1177/1745691614545130
- Decety, J., & Yoder, K. J. (2015). Empathy and motivation for justice: Cognitive empathy and concern, but not emotional empathy, predict sensitivity to injustice for others. *Social Neuroscience*, *11*(1), 1–14. http://doi.org/10.1080/17470919.2015.1029593
- Eres, R., Decety, J., Louis, W. R., & Molenberghs, P. (2015). Individual differences in local gray matter density are associated with differences in affective and cognitive empathy. *NeuroImage*, 117, 305– 310. http://doi.org/10.1016/j.neuroimage.2015.05.038
- Etz, A., & Vandekerckhove, J. (2016). A Bayesian Perspective on the Reproducibility Project: Psychology. *PLoS ONE*, *11*(2), e0149794. http://doi.org/10.1371/journal.pone.0149794
- FeldmanHall, O., Dalgleish, T., Evans, D., & Mobbs, D. (2015). Empathic concern drives costly altruism. *NeuroImage*, 105, 347–356. http://doi.org/10.1016/j.neuroimage.2014.10.043
- FeldmanHall, O., Mobbs, D., Evans, D., Hiscox, L., Navrady, L., & Dalgleish, T. (2012). What we say and what we do: the relationship between real and hypothetical moral choices. *Cognition*, *123*(3), 434–41. http://doi.org/10.1016/j.cognition.2012.02.001
- Francis, K. B., Howard, C., Howard, I. S., Gummerum, M., Ganis, G., Anderson, G., & Terbeck, S. (2016). Virtual Morality: Transitioning from Moral Judgment to Moral Action? *PLoS ONE*, 11(10), e0164374. http://doi.org/10.1371/journal.pone.0164374
- Graham, J., Nosek, B. A., Haidt, J., Iyer, R., Koleva, S., & Ditto, P. H. (2011). Mapping the moral domain. *Journal of Personality and Social Psychology*, 101(2), 366–385. http://doi.org/10.1037/a0021847
- Graziano, W. G., Habashi, M. M., Sheese, B. E., & Tobin, R. M. (2007). Agreeableness, empathy, and helping: A person × situation perspective. *Journal of Personality and Social Psychology*, *93*(4), 583–599. http://doi.org/10.1037/0022-3514.93.4.583
- Habashi, M. M., Graziano, W. G., & Hoover, A. E. (2016). Searching for the Prosocial Personality: A Big Five Approach to Linking Personality and Prosocial Behavior. *Personality & Social Psychology Bulletin*, 42(9), 1177–92. http://doi.org/10.1177/0146167216652859
- Hein, G., Lamm, C., Brodbeck, C., & Singer, T. (2011). Skin conductance response to the pain of others predicts later costly helping. *PLoS ONE*, 6(8), e22759. http://doi.org/10.1371/journal.pone.0022759
- Hortensius, R., Schutter, D. J. L. G., & de Gelder, B. (2016). Personal distress and the influence of bystanders on responding to an emergency. *Cognitive, Affective, & Behavioral Neuroscience, 16*(4), 672–688. http://doi.org/10.3758/s13415-016-0423-6
- Hu, Y., Strang, S., & Weber, B. (2015). Helping or punishing strangers: neural correlates of altruistic decisions as third-party and of its relation to empathic concern. *Frontiers in Behavioral*

Neuroscience, 9, 24. http://doi.org/10.3389/fnbeh.2015.00024

- Hubbard, J., Harbaugh, W. T., Srivastava, S., Degras, D., & Mayr, U. (2016). A general benevolence dimension that links neural, psychological, economic, and life-span data on altruistic tendencies. *Journal of Experimental Psychology: General*, 145(10), 1351–1358. http://doi.org/10.1037/xge0000209
- Ingoglia, S., Lo Coco, A., & Albiero, P. (2016). Development of a Brief Form of the Interpersonal Reactivity Index (B-IRI). *Journal of Personality Assessment*, 98(5), 461–471. http://doi.org/10.1080/00223891.2016.1149858
- Jarosz, A. F., & Wiley, J. (2014). What Are the Odds? A Practical Guide to Computing and Reporting Bayes Factors. *The Journal of Problem Solving*, 7(1). http://doi.org/10.7771/1932-6246.1167
- Jordan, M. R., Amir, D., & Bloom, P. (2016). Are Empathy and Concern Psychologically Distinct? *Emotion*, 16(8), 1107–1116. http://doi.org/10.1037/emo0000228
- Kawamichi, H., Yoshihara, K., Sugawara, S. K., Matsunaga, M., Makita, K., Hamano, Y. H., ... Sadato, N. (2015). Helping behavior induced by empathic concern attenuates anterior cingulate activation in response to others' distress. *Social Neuroscience*, *11*(2), 109–22. http://doi.org/10.1080/17470919.2015.1049709
- Lebowitz, M. S., & Dovidio, J. F. (2015). Implications of emotion regulation strategies for empathic concern, social attitudes, and helping behavior. *Emotion*, 15(2), 187–194. http://doi.org/10.1037/a0038820
- Levy-Gigi, E., & Shamay-Tsoory, S. G. (2017). Help me if you can: Evaluating the effectiveness of interpersonal compared to intrapersonal emotion regulation in reducing distress. *Journal of Behavior Therapy and Experimental Psychiatry*, 55, 33–40. http://doi.org/10.1016/j.jbtep.2016.11.008
- Lockwood, P. L., Seara-Cardoso, A., & Viding, E. (2014). Emotion regulation moderates the association between empathy and prosocial behavior. *PLoS ONE*, 9(5), e96555. http://doi.org/10.1371/journal.pone.0096555
- Maner, J. K., Luce, C. L., Neuberg, S. L., Cialdini, R. B., Brown, S., & Sagarin, B. J. (2002). The Effects of Perspective Taking on Motivations for Helping: Still No Evidence for Altruism. *Personality and Social Psychology Bulletin*, 28(11), 1601–1610. http://doi.org/10.1177/014616702237586
- Mutschler, I., Reinbold, C., Wankerl, J., Seifritz, E., & Ball, T. (2013). Structural basis of empathy and the domain general region in the anterior insular cortex. *Frontiers in Human Neuroscience*, *7*, 177. http://doi.org/10.3389/fnhum.2013.00177
- Neuberg, S. L., Cialdini, R. B., Brown, S. L., Luce, C., Sagarin, B. J., & Lewis, B. P. (1997). Does empathy lead to anything more than superficial helping? Comment on Batson et al. (1997). *Journal of Personality and Social Psychology*, *73*(3), 510–516. http://doi.org/10.1037/0022-3514.73.3.510
- O'Brien, L. M., Ziegler, D. A., Deutsch, C. K., Frazier, J. A., Herbert, M. R., & Locascio, J. J. (2011). Statistical adjustments for brain size in volumetric neuroimaging studies: Some practical implications in methods. *Psychiatry Research - Neuroimaging*, *193*(2), 113–122. http://doi.org/10.1016/j.pscychresns.2011.01.007
- Paciello, M., Fida, R., Cerniglia, L., Tramontano, C., & Cole, E. (2013). High cost helping scenario: The role of empathy, prosocial reasoning and moral disengagement on helping behavior. *Personality and*

Individual Differences, 55(1), 3-7. http://doi.org/10.1016/j.paid.2012.11.004

- Patil, I., Cogoni, C., Zangrando, N., Chittaro, L., & Silani, G. (2014). Affective basis of judgmentbehavior discrepancy in virtual experiences of moral dilemmas. *Social Neuroscience*, 9(1), 94–107. http://doi.org/10.1080/17470919.2013.870091
- Patil, I., Melsbach, J., Hennig-Fast, K., & Silani, G. (2016). Divergent roles of autistic and alexithymic traits in utilitarian moral judgments in adults with autism. *Scientific Reports*, 6, 23637. http://doi.org/10.1038/srep23637
- Patil, I., & Silani, G. (2014a). Alexithymia increases moral acceptability of accidental harms. *Journal of Cognitive Psychology*, 26(5), 597–614. http://doi.org/10.1080/20445911.2014.929137
- Patil, I., & Silani, G. (2014b). Reduced empathic concern leads to utilitarian moral judgments in trait alexithymia. *Frontiers in Psychology*, *5*, 501. http://doi.org/10.3389/fpsyg.2014.00501
- Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The Experience of Presence: Factor Analytic Insights. *Presence*, *10*(3), 266–281. http://doi.org/10.1162/105474601300343603
- Stocks, E. L., López-Pérez, B., & Oceja, L. V. (2017). Can't get you out of my mind: empathy, distress, and recurring thoughts about a person in need. *Motivation and Emotion*, 41(1), 84–95. http://doi.org/10.1007/s11031-016-9587-1
- Teper, R., Tullett, A., Page-Gould, E., & Inzlicht, M. (2015). Errors in Moral Forecasting: Perceptions of Affect Shape the Gap Between Moral Behaviors and Moral Forecasts. *Personality and Social Psychology Bulletin*, 41(7), 887–900. http://doi.org/10.1177/0146167215583848
- Tomova, L., Majdandžić, J., Hummer, A., Windischberger, C., Heinrichs, M., & Lamm, C. (2016). Increased neural responses to empathy for pain might explain how acute stress increases prosociality. *Social Cognitive And Affective Neuroscience*. http://doi.org/10.1093/scan/nsw146
- Tusche, A., Bockler, A., Kanske, P., Trautwein, F.-M., & Singer, T. (2016). Decoding the Charitable Brain: Empathy, Perspective Taking, and Attention Shifts Differentially Predict Altruistic Giving. *Journal of Neuroscience*, 36(17), 4719–4732. http://doi.org/10.1523/JNEUROSCI.3392-15.2016
- Valk, S., Bernhardt, B., Böckler, A., Trautwein, F.-M., Kanske, P., & Singer, T. (2016). Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks. *Cerebral Cortex*. http://doi.org/10.1093/cercor/bhv319
- Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. *Psychonomic Bulletin & Review*, 14(5), 779–804. http://doi.org/10.3758/BF03194105
- Wilhelm, M. O., & Bekkers, R. (2010). Helping Behavior, Dispositional Empathic Concern, and the Principle of Care. *Social Psychology Quarterly*, 73(1), 11–32. http://doi.org/10.1177/0190272510361435
- Winczewski, L. A., Bowen, J. D., & Collins, N. L. (2016). Is Empathic Accuracy Enough to Facilitate Responsive Behavior in Dyadic Interaction? Distinguishing Ability From Motivation. *Psychological Science*, 27(3), 394–404. http://doi.org/10.1177/0956797615624491
- Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. *Presence*, 7(3), 225–240. http://doi.org/10.1162/105474698565686
- Yue, T., Pan, W., & Huang, X. (2016). The relationship between trait positive empathy and brain

structure: a voxel-based morphometry study. *Neuroreport*, 27(6), 422–6. http://doi.org/10.1097/WNR.00000000000557

Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2014). Brain activity and prosocial behavior in a simulated life-threatening situation. *NeuroImage*, *98*, 134–146. http://doi.org/10.1016/j.neuroimage.2014.04.053