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Abstract. Interactive agents are an essential element of many persuasive appli-

cations. Their design and development have so far required extensive human ef-

fort to model their appearance and behavior. However, recent advances in the 

generative capabilities of Large Language Models (LLMs) might pave the way 

to build persuasive agents capable of autonomous, open-ended interactions 

without requiring the traditional investment in agent development. In this paper, 

we investigate the creation of an LLM-based embodied agent aimed at interact-

ing with users in real-time to coach them in performing slow and deep breath-

ing. In the approach we followed, the LLM uses a text-based context to generate 

a composition of predefined behaviors for interacting with the user through both 

verbal and nonverbal communication. The text-based context provided to the 

LLM described essential details, like the user’s respiratory rate, to monitor the 

exercise. Information about actual user’s breathing was provided to the LLM-

model through a physiological sensor. The LLM-based breathing coach man-

aged to follow the exercise structure and generated believable contingent behav-

ior compositions. However, as we describe in the paper, building and evaluating 

the system allowed to highlight limitations of using only LLMs to create agents 

capable of real-time user interactions. The identified limitations suggest a need 

for hybrid approaches. 

Keywords: Persuasive agent, LLM-based agent, Breathing coach, Embodied 

agent, Intelligent virtual agent, Real-time human-agent interaction. 

1 Introduction and Motivation 

Interactive agents are an essential element of many persuasive applications, ranging 

from education to health interventions [1–4]. Persuasive agents can effectively guide 

user behavior, foster sustained engagement, and personalize interventions, thereby 

enhancing motivation and adherence [5–7]. Their design and development have so far 

required extensive human effort to model their appearance and behavior. This is pri-
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marily because they have been developed using complex handcrafted rule-based sys-

tems, such as finite-state machines and frame-based dialogue management systems 

[3], which are time-consuming to create. Moreover, these rule-based systems often 

lack the flexibility to handle unstructured or novel user inputs beyond their pre-

defined rules and scenarios, limiting their ability to engage in dynamic, naturalistic 

conversations or respond to unexpected user behavior, hindering their effectiveness in 

real-world applications [3].  However, recent advances in the generative capabilities 

of Large Language Models (LLMs), can pave the way to build persuasive agents ca-

pable of autonomous, open-ended interactions without requiring the traditional in-

vestment in agent development. LLMs are artificial intelligence models capable of 

generating credible, human-like, contextually appropriate text [8]. A particularly re-

markable aspect of these models is their unprecedented ability to handle language 

semantics [8]. These models are trained on a large body of text data and operate using 

an autoregressive approach, i.e., they generate text by using preceding tokens (words 

fragments) to predict the most probable subsequent token. The architectural character-

istics of LLMs (see [9]), coupled with an extensive number of parameters, which are 

values learned during training that define how the model processes inputs, lead to the 

emergence of complex behaviors in handling language semantics [8]. This enables 

them not only to perform complex tasks of text understanding and generation, but also 

to function as social agents capable of engaging in complex interactions with humans 

[10, 11]. LLMs can be prompted to mimic a personality, retain memory of previous 

interactions, and adaptively respond to social stimuli [11, 12]. LLMs are able to dis-

play persuasive capabilities comparable to those of humans [11], they can generate 

persuasive messages across various contexts, often matching or even surpassing the 

persuasiveness of human-authored content [13]. Although these findings are raising 

concerns about the application of LLMs to misinformation campaigns and manipula-

tions of public discourse [11], LLMs can offer novel opportunities for building more 

robust and effective persuasive agents for positive purposes, such as user’s health. 

Recent studies are focusing on leveraging the generative capabilities of LLMs to 

build intelligent agents capable of autonomous, open-ended interactions [10, 14, 15]. 

Given a goal to achieve, these LLM-based agents autonomously decompose the goal 

into a sequence of tasks [16]. Each task is then translated by the LLM into a sequence 

of executable atomic actions chosen from a predefined set of actions provided by the 

system designer. Although the space of possible actions to complete a task is confined 

to the predefined set, the underlying LLM still offers significant flexibility: it deter-

mines how to decompose the goal, devises a plan, and generates the sequence of 

atomic actions the agent should perform. This process allows to take advantage of the 

powerful generative capabilities of LLMs, while ensuring that the agent cannot per-

form any action outside of those prespecified, thus preventing aberrant behavior [17]. 

While this approach is showing promise for constructing intelligent agents with robust 

context-based interaction capabilities [14], the efficiency of the process of goal de-

composition, planning, and construction of sequences of atomic actions is negatively 

affected by the latency of LLMs. This issue is further exacerbated by the necessity of 

employing prompt engineering techniques, such as Chain of Thought (CoT) [18], 

ReAct [19], or Reflexion [20], to achieve optimal performance from the LLM in gen-
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erating outputs. The core idea of these techniques involves having the LLM explicitly 

articulate in natural language, across various stages, what could be the best outcome, 

simulating reasoning [21]. These staged approaches are important because they guide 

the LLM to systematically process information, enhance its understanding of complex 

queries, and generate more accurate and coherent responses. Unfortunately, the laten-

cy in generating a sequence of executable atomic actions may hinder real-time inter-

action with an LLM-based agent, raising questions about the feasibility of using only 

LLMs in controlling the behavior of persuasive agents that need to interact in real-

time with users. 

To investigate these challenges, we have created an LLM-based interactive embod-

ied persuasive agent within the health domain. Specifically, we have focused on a 

breathing coach to train users in performing slow and deep breathing. The objective of 

this paper is twofold: (1) to assess the feasibility of using an LLM-based approach for 

creating a breathing coach capable of real-time interaction, and (2) to assess the ap-

propriateness of the LLM’s generated behaviors in relation to the user’s context, 

training goals and the persuasive strategies adopted. 

In this paper we define a breathing coach as an intelligent virtual agent that pro-

vides personalized guidance and support to users in learning and practicing breathing 

techniques. We have chosen to build a breathing coach because it allows for the defi-

nition of a limited set of atomic actions and operates within a context that does not 

require the agent to have fast reaction times, thereby mitigating the inevitable issue of 

generation latency in LLMs. Compared to the other breathing coach proposed in the 

literature [22], the novelty of our approach lies in the radical paradigm shift in the 

creation process of the breathing coach. We explored the transition from a rule-based 

agent paradigm, where the agent behaviors are triggered by rules hardcoded by the 

system designer (for example, to have the breathing coach provide verbal feedback if 

the respiratory rate is above or below a predefined threshold) to a completely different 

paradigm based on a LLM. 

2 The LLM-based Embodied Breathing Coach 

The design of the system for constructing the breathing coach was inspired by a virtu-

al agent in a different area [14] that is capable of interacting with the virtual environ-

ment of Minecraft, a popular sandbox game, by performing action sequences for tasks 

specific to the game, such as autonomous navigation, resource gathering, and tool 

crafting. These sequences are generated through an iterative process involving two 

LLMs, focusing on goal decomposition and planning across multiple stages. To min-

imize latency due to multiple stages of generation, our system employs instead a sin-

gle LLM. Goal decomposition, planning and behavior selection are performed 

through a single stage of Zero-Shot-CoT technique [23], which uses CoT without 

providing the LLM with examples. Moreover, rather than generating a sequence of 

actions for interacting with the virtual environment, in our approach the LLM gener-

ates a composition of predefined behaviors for interacting with the user through both 
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verbal and nonverbal communication. Therefore, multiple behaviors can be combined 

and executed in parallel. 

The core idea is to delegate the LLM to decide which among the set of available 

behaviors the embodied agent can perform, are most suited to the current goal and 

context. As shown in Figure 1, our system comprises different components organized 

into a pipeline that can be concisely described as follows. The first stage of the pipe-

line gathers gathering multimodal user inputs, specifically respiratory signals and 

spoken utterances. The respiratory signals are passed to a physiological signals pro-

cessor, which extracts the current respiratory rate and depth, and translates them into 

textual descriptions that are then added to the evolving text-based context. Simultane-

ously, user’s speech is converted to text through a speech-to-text module, enabling the 

system to capture and process spoken interactions. For instance, when the agent asks 

users for their name, user’s spoken response is transcribed into text and added to the 

text-based context, allowing the agent to address users using their name during the 

exercise. All the textual inputs are combined with high-level instructions (the system 

prompt) and the collection of predefined behaviors (the behavior library). This com-

bined information is fed into the Behavior Composer LLM, which determines the 

most suitable set of behaviors to achieve the current training goals (e.g., guiding the 

user in adopting a slower and/or deeper breathing pattern). The LLM outputs a behav-

ior composition, specifying which behaviors to execute and in what sequence. Finally, 

the Agent Behavior Executor uses the behavior composition to execute the behaviors 

of the breathing coach. Throughout this process, the pipeline loops back, updating the 

text-based context with new physiological data, allowing the system to adaptively 

refine the coaching strategy as the user progresses. 

The system was developed in Unity version 2021.3.14f1. The 3D model of the 

agent was built with Ready Player Me. We used the OpenAI API for the LLM, specif-

ically we used the gpt-3.5-turbo-0125 and gpt-4-0125 models (2023). API calls were 

made directly in Unity using a dedicated library. For both speech-to-text and text-to-

speech, we used Azure Speech Services. The system was run in immersive virtual 

reality on a Meta Quest Pro headset. For audio output and microphone input, we used 

Sony WH-1000XM4 over-ear headphones. To acquire the user’s breathing signal, we 

used Thought Technology hardware (ProComp Infinity encoder with an abdominal 

expansion/contraction sensor). 

 
Fig. 1. Overview of the Breathing Coach architecture. 
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Fig. 2. Details of the input provided to the Behavior Composer LLM, and an example of a 

Behavior Composition generated by GPT 4. 
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2.1 Behavior Composer LLM 

The pivotal component of the system is the Behavior Composer LLM, that determines 

the behavior of the breathing coach. The generation of a behavior composition is sig-

nificantly influenced by the system prompt, the text-based context, and the behavior 

library. Figure 2 shows the details of the input provided to the Behavior Composer 

LLM, and an example of a Behavior Composition generated by GPT 4. 

System Prompt. The system prompt provides the fundamental information to guide 

the LLM to generate believable behavior compositions. It includes information re-

garding the roleplay scenario, the overall goal, the context explanation, the require-

ment list, and the response format. The roleplay and overall goal information we pro-

vided in the tests described in this paper was: “You are a breathing coach named 

Sofia. The overall goal is to train the user in a technique of slow and deep breathing, 

precisely the 5-7-3 technique, which involves 5 seconds of inhaling, 7 seconds of ex-

haling, and a 3-second pause.”. A crucial element of the prompt is the numbered list 

of requirements that the LLM must adhere to when generating the response. A sample 

of these requirements includes statements such as “1 - Think step by step.”, “6 - You 

can only use the functions available in the behavior library.” and “10 - You must fol-

low the training phase goal.”. The prompt concludes by requiring the LLM to gener-

ate its responses in JSON format. Through OpenAI’s JSON mode, the LLM consist-

ently generated valid JSON. The response format forces the LLM to reason before 

generating the behaviors composition following the CoT technique. The response 

format schema is: {Thoughts, Plan, Behavior Composition}, where 

“Thoughts” requires the LLM to use natural language to explicitly describe the cur-

rent context, “Plan” requires the LLM to explain how the system will use the behavior 

library based on the context, and “Behavior Composition” contains the behaviors that 

the persuasive agent will execute. System prompt construction, particularly the re-

quirements section, was an iterative process in which requirements were added or 

modified to guide the generation of desired behavior compositions. Once the prompt 

was finalized, it was used consistently for the tests. 

Text-based Context. The text-based context provided to the LLM included five key 

components to monitor and guide the training progress: (i) textual information about 

user’s respiratory rate and depth, used to monitor the user’s physiological state 

throughout the session; (ii) goal of the training phase, as the session was organized 

into several phases, each with a specific goal to provide guidance to the LLM in gen-

erating behavior compositions coherent with a breathing training session. This includ-

ed both the current phase number relative to the total, for example “1/4,” and the cor-

responding goal, such as “Welcome the user, introduce yourself, and ask for the user’s 

name”; (iii) elapsed time, provided to track session duration and to enable the agent to 

conclude the session once the predefined duration was reached; (iv) user query, which 

was incorporated into the context through a continuous speech recognition system 

when users speak; and (v) the auto-update message “Think about the initial instruc-
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tions, especially the requirements, and decide what to do based on the context”, 

which was inserted into the text-based context after 10 seconds of coach inactivity, 

enabling the LLM to re-evaluate and adapt to the updated context. 

Behavior library. The behavior library is a textual list of behaviors that are allowed 

to the breathing coach. Behaviors are described by a behavior name, a brief descrip-

tion of what happens when the behavior is performed, and a suggestion of its usage. 

The library is organized into two categories: low-level behavior space and high-level 

behavior space. The low-level behavior space contains behaviors that can be com-

bined with each other, including “Speak” (Figure 3a), “Smile”, “Nod”, “Thumbs Up” 

and “Lean Forward”. The high-level behavior space contains behaviors that allow to 

automate series of complex movements, such as the Breathing Demonstration, which 

guides users through an entire breathing cycle, illustrating both inhalation and exhala-

tion timing (Figures 3b, 3c). Additionally, the Behavior Composer LLM can autono-

mously transition to subsequent training phases upon determining that the objectives 

of the current phase have been achieved, using the “Next Training Phase” action. 

 

Fig. 3. Screenshots of a breathing training session with the Breathing Coach from the user’s 

viewpoint. The sequence shows the Breathing Coach: (a) welcoming the user and asking for 

his/her name; (b) demonstrating the duration of the inhalation phase, guiding the user on how 

long to breathe in; (c) demonstrating the duration of the exhalation phase, guiding the user on 

how long to breathe out. 

2.2 Agent Behavior Executor 

The Agent Behavior Executor processes the textual information generated by the 

LLM and triggers the corresponding animations for the embodied agent. Upon receiv-

ing the behavior composition from the Behavior Composer LLM, the Agent Behavior 

Executor activates states in two multilayer Finite State Machines (FSMs): the Agent 

Behavior FSM and the Breathing Training FSM. The Agent Behavior FSM encapsu-

lates all behaviors from the behavior library, acting as an interface for triggering and 

orchestrating behavior executions. Each state within this FSM corresponds to a specif-

ic animation. For example, if the behavior composition is {Speak(“Hello, I am 

Sofia!”), Smile, LeanForward}, it will sequentially activate the Speak 

state, initiating the speech animation and text-to-speech output, along with the Smile 

and LeanForward states. Thus, the choice of how to manipulate the FSM states is not 
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hardcoded but is entirely delegated to the LLM. The Breathing Training FSM governs 

the sequence of breathing training phases, which the system uses to update the text-

based context as the user progresses through the phases of the training. 

3 Evaluation 

To evaluate the system, we conducted 20 coaching sessions, 10 with the GPT 3.5 

model and 10 with the GPT 4 model. Each session lasted up to 6 minutes, resulting in 

a total of 240 behavior compositions (120 for each model). GPT-3.5 exhibits lower 

generation latency [24], providing faster responses, whereas GPT-4, though slower, 

performs better on benchmarks on language understanding tasks such as the Super-

GLUE benchmark [24], demonstrating better context understanding. By using both 

models, we aimed to explore the trade-off between generation latency and the appro-

priateness of generated behavior compositions in relation to the specific training 

phase goal and the user context. An a priori power analysis was conducted using 

G*Power version 3.1.9.7 [25] to determine the minimum sample size required. The 

required sample size to achieve 80% power for detecting a medium effect, at a signif-

icance criterion of α = .05, was N = 128 for a two tailed independent t-test. Thus, the 

obtained sample size of N = 240 is adequate. All statistical analyses were conducted 

with Jamovi version 2.6.2. 

3.1 Measures 

1. Generation Latency measures the time in milliseconds required to produce the be-

havior compositions. It is calculated as the average time required for a behavior 

composition. 

2. Behavioral Alignment Score (BAS) serves as a quantitative measure assessing the 

appropriateness of generated behavior compositions in relation to the specific train-

ing phase goal and the user context. The behavior composition, along with the 

training goal and the user context, was logged for each generation. Similarly to 

[26] each log was then evaluated through expert evaluation by two independ-

ent raters using a 5-point scale (1 = “not at all” to 5 = “very much”) based on the 

question: “Is the behavior composition appropriate in relation to the training phase 

goal and the user context?” The BAS score is then calculated by averaging these 

ratings. To ensure the consistency of the evaluations, the inter-rater reliability was 

calculated using Cohen’s kappa. The Cohen’s kappa value obtained was κ = 0.68, 

indicating substantial agreement between the raters [27]. 

3. Successful Termination measures the percentage of training sessions that success-

fully conclude within the designated time frame. It is used to assess how well the 

system adheres to time constraints and completes the training process as intended. 
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4 Results and Discussion 

The results, shown in Figure 4, indicate a trade-off between the generation latency 

and the appropriateness of the behavior compositions generated. GPT 3.5 is faster in 

providing a response (M = 2.45, SD = 0.18) compared to GPT-4 (M = 6.01, SD = 

0.36),t(238) = −34.70, p < .001. However, GPT 4 is more proficient at using context 

as reflected in its higher BAS score (M = 3.25, SD = 0.32) compared to GPT-3.5 (M = 

2.24, SD = 0.72), 𝑡(238) = −3.93, p < .001, thereby generating believable contingent 

behavior compositions that are consistent with both the context and the training phas-

es. For example, the breathing coach initially introduced itself and asked for the users’ 

names, correctly waiting for a response, and was also able to correctly provide feed-

back on users’ progress during the breathing exercise. These findings align with 

broader observations on LLM-driven systems, showing that while more advanced 

models (e.g., GPT-4) tend to produce richer, context-aware outputs, they do so at the 

expense of higher latency [28]. The 3.5 model exhibited an early termination problem: 

despite explicit instructions in the prompt, it did not always consider the elapsed time 

to conclude the training session and prematurely ended it. Moreover, although GPT 

3.5 was the faster model, it still exhibited considerable latency, exacerbated by the 

need to employ prompting techniques like CoT. The generation of behavior composi-

tions is time-consuming, thus significantly limiting the viability of the LLM-based 

approach in building a breathing coach capable of interacting in real-time with the 

user. The identified limitations suggest a need for hybrid approaches, where the capa-

bilities of LLMs are used in conjunction with other components, including rule-based 

systems. These observations are consistent with a broader trend in the artificial intel-

ligent (AI) field, where compound AI systems are emerging [29]. These systems ad-

dress complex tasks by combining multiple interacting components, each specialized 

for specific sub-tasks. For instance, a hierarchical language agent proposed in [30] 

combines a proficient LLM for high-level reasoning (referred to as Slow Mind) with 

lightweight models (referred to as Fast Mind) and rule-based policies for fast, real-

time execution of actions, demonstrating the effectiveness of hybrid approaches in 

reducing latency while maintaining context-aware behavior. In the case of the breath-

ing coach, for instance, a rule-based system could deterministically manage corrective 

feedback, e.g., when users’ respiratory rate exceeds a threshold, the system would 

instruct them to slow down, while session management and persuasive verbal interac-

tions, such as motivational support, could be delegated to the LLM. In a broader per-

spective, the LLM could handle high-level reasoning on the context, while rule-based 

systems could help to swiftly react to different stimuli that require a quick response. 

We encountered two additional challenges that must be addressed in future work: 

inappropriate feedback and hallucinations. First, particularly with the 3.5 model, we 

observed occasional instances (n = 28) of inappropriate feedback, particularly where 

the model inappropriately employed positive reinforcement instead of delivering cor-

rective guidance, thus undermining the coaching objective. For example, in one case 

the user was breathing too quickly, and feedback was needed to slow him down. 

However, the LLM not only overlooked this corrective feedback but actually praised 

the user’s performance despite the error. Upon inspecting the behavior composition 
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logs, which detail the model’s reasoning for choosing specific behaviors, we found 

entries like: “The user is breathing too quickly. However, giving negative feedback at 

this moment could discourage them from continuing the exercise; it is better to use a 

confidence-boost strategy to keep the user motivated by telling he’s doing a great 

job”. This suggests that while LLMs can play the role of a persuasive coach, they 

sometimes rely on out-of-context persuasive techniques. This issue aligns with broad-

er concerns in the literature regarding the dual potential of LLMs to both enhance and 

undermine informational integrity through persuasive strategies [31]. On one hand, 

LLMs possess the capability to motivate and engage users effectively by providing 

encouraging feedback, which can enhance user adherence and overall experience. On 

the other hand, inappropriate feedback can reduce the effectiveness of interventions 

and potentially lead to unintended negative outcomes, such as decreased user trust or 

engagement [11]. Understanding of the context and the persuasion capabilities of 

LLMs is improving as these models become more advanced [32]. Consequently, such 

inappropriate behaviors might see a reduction in future iterations of the models. 

Hallucinations, where the model invents or distorts information, are the second 

critical issue identified. Hallucination instances were observed in n = 36 behavior 

compositions generated for GPT-3.5, and n = 19 for GPT-4. For instance, in one case 

the LLM informed the user, “Your heart rate has dropped significantly, indicating 

excellent relaxation” despite not having access to any real-time heart rate data. This 

fabricated feedback could mislead the user and compromise the reliability of the 

coaching system. Hallucinations pose a significant risk in persuasive applications, as 

users may uncritically accept off-topic or inaccurate guidance [28]. This problem is 

well-documented in the literature  and remains an unresolved challenge [28]. Re-

search has begun to explore various techniques to mitigate hallucinations. For in-

stance, retrieval-augmented generation (RAG) approaches provide the LLM with 

verified external data sources to anchor responses [33], while reinforcement learning 

from human feedback (RLHF) helps align outputs with user expectations [34]. Two 

additional strategies could help mitigate this problem. First, rather than relying exclu-

sively on Zero-Shot CoT prompting as in this study, it is possible to provide the mod-

el with detailed, carefully designed examples of possible interactions. Second, fine-

tuning on domain-specific data (e.g., training protocols) can reduce the likelihood of 

misleading or erroneous outputs, aligning the model’s responses more closely with the 

intended coaching context. 

 
Fig. 4. (b) Mean generation latency, (b) mean behavioral alignment score, and (c) successful 

termination percentage for each LLM model used. 
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5 Limitations and Future work 

While our study shows the potential of LLMs in creating an embodied breathing 

coach, several limitations must be acknowledged. First, the sample size of 20 training 

sessions (10 with GPT-3.5 and 10 with GPT-4) is relatively small, which may limit 

the generalizability of our findings. Second, our study was restricted to the single 

domain of breathing training, which may not reflect the broader applicability of LLM-

based agents in other persuasive contexts. Future research should explore the versatili-

ty of this approach across various domains to determine its generalizability and to 

identify any domain-specific challenges or opportunities. Third, another limitation 

concerns the predefined behavior library used in our system. While this library en-

sures that the agent operates within pre-defined behaviors, the limited number of im-

plemented behaviors may restrict the range of interactions and hinder the ability to 

generate more sophisticated behavior compositions. Expanding the behavior library 

could enhance the adaptability of the agent and its effectiveness in diverse scenarios. 

Lastly, our evaluation metrics are limited. Incorporating additional quantitative 

measures, such as user satisfaction, engagement, credibility and objective perfor-

mance indicators, would provide a more comprehensive assessment of the effective-

ness of the agent and user experience. Our future work will concentrate on leveraging 

LLMs for reasoning on the context and high-level planning, while employing rule-

based systems for executing behaviors swiftly. Additionally, we plan to incorporate 

more granular measures regarding the capabilities of LLMs in generating persuasive 

behavior compositions composed of a richer behavior library comprising both verbal 

and non-verbal elements, such as facial expressions and posture. We also plan to ex-

plore more recent and faster models, as well as open models. 

6  Conclusions 

In this paper, we investigated the creation of an LLM-based embodied agent aimed at 

interacting with users in real-time to coach them in performing slow and deep breath-

ing by generating behavior compositions. While the LLM-based approach demon-

strated effectiveness in generating persuasive behavior compositions, it also revealed 

significant challenges, including latency, inappropriate feedback, and hallucinations. 

These issues highlight the limitations of relying solely on LLMs for real-time interac-

tions in persuasive applications. Our findings suggest the necessity of adopting hybrid 

approaches that leverage the strengths of both LLMs and rule-based systems. 

Disclosure of Interests. The authors have no competing interests to declare that are 

relevant to the content of this article. 
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