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Abstract. Interactive agents are an essential element of many persuasive appli-
cations. Their design and development have so far required extensive human ef-
fort to model their appearance and behavior. However, recent advances in the
generative capabilities of Large Language Models (LLMs) might pave the way
to build persuasive agents capable of autonomous, open-ended interactions
without requiring the traditional investment in agent development. In this paper,
we investigate the creation of an LLM-based embodied agent aimed at interact-
ing with users in real-time to coach them in performing slow and deep breath-
ing. In the approach we followed, the LLM uses a text-based context to generate
a composition of predefined behaviors for interacting with the user through both
verbal and nonverbal communication. The text-based context provided to the
LLM described essential details, like the user’s respiratory rate, to monitor the
exercise. Information about actual user’s breathing was provided to the LLM-
model through a physiological sensor. The LLM-based breathing coach man-
aged to follow the exercise structure and generated believable contingent behav-
ior compositions. However, as we describe in the paper, building and evaluating
the system allowed to highlight limitations of using only LLMs to create agents
capable of real-time user interactions. The identified limitations suggest a need
for hybrid approaches.

Keywords: Persuasive agent, LLM-based agent, Breathing coach, Embodied
agent, Intelligent virtual agent, Real-time human-agent interaction.

1 Introduction and Motivation

Interactive agents are an essential element of many persuasive applications, ranging
from education to health interventions [1-4]. Persuasive agents can effectively guide
user behavior, foster sustained engagement, and personalize interventions, thereby
enhancing motivation and adherence [5-7]. Their design and development have so far
required extensive human effort to model their appearance and behavior. This is pri-
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marily because they have been developed using complex handcrafted rule-based sys-
tems, such as finite-state machines and frame-based dialogue management systems
[3], which are time-consuming to create. Moreover, these rule-based systems often
lack the flexibility to handle unstructured or novel user inputs beyond their pre-
defined rules and scenarios, limiting their ability to engage in dynamic, naturalistic
conversations or respond to unexpected user behavior, hindering their effectiveness in
real-world applications [3]. However, recent advances in the generative capabilities
of Large Language Models (LLMs), can pave the way to build persuasive agents ca-
pable of autonomous, open-ended interactions without requiring the traditional in-
vestment in agent development. LLMs are artificial intelligence models capable of
generating credible, human-like, contextually appropriate text [8]. A particularly re-
markable aspect of these models is their unprecedented ability to handle language
semantics [8]. These models are trained on a large body of text data and operate using
an autoregressive approach, i.e., they generate text by using preceding tokens (words
fragments) to predict the most probable subsequent token. The architectural character-
istics of LLMs (see [9]), coupled with an extensive number of parameters, which are
values learned during training that define how the model processes inputs, lead to the
emergence of complex behaviors in handling language semantics [8]. This enables
them not only to perform complex tasks of text understanding and generation, but also
to function as social agents capable of engaging in complex interactions with humans
[10, 11]. LLMs can be prompted to mimic a personality, retain memory of previous
interactions, and adaptively respond to social stimuli [11, 12]. LLMs are able to dis-
play persuasive capabilities comparable to those of humans [11], they can generate
persuasive messages across various contexts, often matching or even surpassing the
persuasiveness of human-authored content [13]. Although these findings are raising
concerns about the application of LLMs to misinformation campaigns and manipula-
tions of public discourse [11], LLMs can offer novel opportunities for building more
robust and effective persuasive agents for positive purposes, such as user’s health.
Recent studies are focusing on leveraging the generative capabilities of LLMs to
build intelligent agents capable of autonomous, open-ended interactions [10, 14, 15].
Given a goal to achieve, these LLM-based agents autonomously decompose the goal
into a sequence of tasks [16]. Each task is then translated by the LLM into a sequence
of executable atomic actions chosen from a predefined set of actions provided by the
system designer. Although the space of possible actions to complete a task is confined
to the predefined set, the underlying LLM still offers significant flexibility: it deter-
mines how to decompose the goal, devises a plan, and generates the sequence of
atomic actions the agent should perform. This process allows to take advantage of the
powerful generative capabilities of LLMs, while ensuring that the agent cannot per-
form any action outside of those prespecified, thus preventing aberrant behavior [17].
While this approach is showing promise for constructing intelligent agents with robust
context-based interaction capabilities [14], the efficiency of the process of goal de-
composition, planning, and construction of sequences of atomic actions is negatively
affected by the latency of LLMs. This issue is further exacerbated by the necessity of
employing prompt engineering techniques, such as Chain of Thought (CoT) [18],
ReAct [19], or Reflexion [20], to achieve optimal performance from the LLM in gen-
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erating outputs. The core idea of these techniques involves having the LLM explicitly
articulate in natural language, across various stages, what could be the best outcome,
simulating reasoning [21]. These staged approaches are important because they guide
the LLM to systematically process information, enhance its understanding of complex
queries, and generate more accurate and coherent responses. Unfortunately, the laten-
cy in generating a sequence of executable atomic actions may hinder real-time inter-
action with an LLM-based agent, raising questions about the feasibility of using only
LLMs in controlling the behavior of persuasive agents that need to interact in real-
time with users.

To investigate these challenges, we have created an LLM-based interactive embod-
ied persuasive agent within the health domain. Specifically, we have focused on a
breathing coach to train users in performing slow and deep breathing. The objective of
this paper is twofold: (1) to assess the feasibility of using an LLM-based approach for
creating a breathing coach capable of real-time interaction, and (2) to assess the ap-
propriateness of the LLM’s generated behaviors in relation to the user’s context,
training goals and the persuasive strategies adopted.

In this paper we define a breathing coach as an intelligent virtual agent that pro-
vides personalized guidance and support to users in learning and practicing breathing
techniques. We have chosen to build a breathing coach because it allows for the defi-
nition of a limited set of atomic actions and operates within a context that does not
require the agent to have fast reaction times, thereby mitigating the inevitable issue of
generation latency in LLMs. Compared to the other breathing coach proposed in the
literature [22], the novelty of our approach lies in the radical paradigm shift in the
creation process of the breathing coach. We explored the transition from a rule-based
agent paradigm, where the agent behaviors are triggered by rules hardcoded by the
system designer (for example, to have the breathing coach provide verbal feedback if
the respiratory rate is above or below a predefined threshold) to a completely different
paradigm based on a LLM.

2 The LLM-based Embodied Breathing Coach

The design of the system for constructing the breathing coach was inspired by a virtu-
al agent in a different area [14] that is capable of interacting with the virtual environ-
ment of Minecraft, a popular sandbox game, by performing action sequences for tasks
specific to the game, such as autonomous navigation, resource gathering, and tool
crafting. These sequences are generated through an iterative process involving two
LLMs, focusing on goal decomposition and planning across multiple stages. To min-
imize latency due to multiple stages of generation, our system employs instead a sin-
gle LLM. Goal decomposition, planning and behavior selection are performed
through a single stage of Zero-Shot-CoT technique [23], which uses CoT without
providing the LLM with examples. Moreover, rather than generating a sequence of
actions for interacting with the virtual environment, in our approach the LLM gener-
ates a composition of predefined behaviors for interacting with the user through both
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verbal and nonverbal communication. Therefore, multiple behaviors can be combined
and executed in parallel.

The core idea is to delegate the LLM to decide which among the set of available
behaviors the embodied agent can perform, are most suited to the current goal and
context. As shown in Figure 1, our system comprises different components organized
into a pipeline that can be concisely described as follows. The first stage of the pipe-
line gathers gathering multimodal user inputs, specifically respiratory signals and
spoken utterances. The respiratory signals are passed to a physiological signals pro-
cessor, which extracts the current respiratory rate and depth, and translates them into
textual descriptions that are then added to the evolving text-based context. Simultane-
ously, user’s speech is converted to text through a speech-to-text module, enabling the
system to capture and process spoken interactions. For instance, when the agent asks
users for their name, user’s spoken response is transcribed into text and added to the
text-based context, allowing the agent to address users using their name during the
exercise. All the textual inputs are combined with high-level instructions (the system
prompt) and the collection of predefined behaviors (the behavior library). This com-
bined information is fed into the Behavior Composer LLM, which determines the
most suitable set of behaviors to achieve the current training goals (e.g., guiding the
user in adopting a slower and/or deeper breathing pattern). The LLM outputs a behav-
ior composition, specifying which behaviors to execute and in what sequence. Finally,
the Agent Behavior Executor uses the behavior composition to execute the behaviors
of the breathing coach. Throughout this process, the pipeline loops back, updating the
text-based context with new physiological data, allowing the system to adaptively
refine the coaching strategy as the user progresses.

The system was developed in Unity version 2021.3.14f1. The 3D model of the
agent was built with Ready Player Me. We used the OpenAl API for the LLM, specif-
ically we used the gpt-3.5-turbo-0125 and gpt-4-0125 models (2023). API calls were
made directly in Unity using a dedicated library. For both speech-to-text and text-to-
speech, we used Azure Speech Services. The system was run in immersive virtual
reality on a Meta Quest Pro headset. For audio output and microphone input, we used
Sony WH-1000XM4 over-ear headphones. To acquire the user’s breathing signal, we
used Thought Technology hardware (ProComp Infinity encoder with an abdominal
expansion/contraction sensor).
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Fig. 1. Overview of the Breathing Coach architecture.
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System Prompt Behavior Library Text-based Context
Instructions Low level behavior space User’s breathing state
« Roleplay information Speak, Smile, Nod, ThumbsUp, Respiratory Rate:
« General goal ) LeanForward Percentage of the current respiratory rate
« Context explanation For each, a brief explanation and relative to the desired rate target, e.g.
Requirements suggestions on when to use. 140%.
[ List of requirements High level behavior space pil y Depth:
. " Percentage of the current respiratory
Response format BreathingDemonstration . o
A brief explanation and suggestions on gegptgorslatlve to the initial deep breath,
.g. 50%.
“thoughts”: “Your thoughts on the when to use.
current user context”, Training phase
“plan”: “Explain how you plan to use the
behavior library”, Input Phase:
“behaviorComposition”: [ Number of the current training phase /
{ number of total training phases, e.g. 1/10.

“behavior”: “behaviorName,e.g.
// optional mile”, Phase goal:
“delay” : secondsOfDelay Goal of the current ‘training phase, e.g.
// optional Welcome the user, introduce yourself and
“args”: { ask the user’s name.

“argName”: value

Elapsed time
|

3} Percentage of the elapsed time, e.g., in a
6-minute session, 50% corresponds to 3
minutes elapsed.

Input User query (optional):

User:
Speech to text output, e.g. “Hil I'm
Christian”.

Auto Update (optional):

Input Auto Update: Think about the initial

instructions, especially the requirements,
and decide what to do based on the user
context.

Behavior Composer
LLM

Generates l

Behavior Composition

"thoughts": "We are at the initial stage of the interaction with no user input yet. My objective is to create a
welcoming and trustworthy environment by warmly greeting the user, introducing myself as their
breathing coach, and personally connecting by asking for their name. Utilizing persuasive strategies
such as establishing rapport, demonstrating empathy, and positive reinforcement will help build
trust and encourage the user to engage further.",

"plan": "1. Use Speak Function:

- Deliver a friendly and inviting greeting that includes my introduction as a breathing coach.

- Use persuasive language to highlight the benefits of engaging with me (e.g., improved well-being,
stress reduction).
Establishing Rapport: use inclusive language like
partnership.
Demonstrating Empathy: acknowledge common challenges related to breathing and stress to show
understanding.
- Positive Reinforcement: highlight the positive outcomes of participating in the coaching sessions to

motivate the user.

- Ask for the user's name in a way that fosters a personal connection and shows genuine interest.

we" and "together" to create a sense of

N

. Use Smile Function:
- Activate the Smile function to convey warmth and approachability.
Use non-verbal cues to reinforce the friendly and supportive tone of the interaction.",

"behaviorComposition": [
"behavior": "Speak",
"args":
"utterance": "Hey there! Welcome! I'm Sofia, your breathing coach. Together, we can help you reduce
stress and feel more relaxed. I'd love to know your name!"
}
3,

"behavior": "Smile"

Fig. 2. Details of the input provided to the Behavior Composer LLM, and an example of a
Behavior Composition generated by GPT 4.
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2.1  Behavior Composer LLM

The pivotal component of the system is the Behavior Composer LLM, that determines
the behavior of the breathing coach. The generation of a behavior composition is sig-
nificantly influenced by the system prompt, the text-based context, and the behavior
library. Figure 2 shows the details of the input provided to the Behavior Composer
LLM, and an example of a Behavior Composition generated by GPT 4.

System Prompt. The system prompt provides the fundamental information to guide
the LLM to generate believable behavior compositions. It includes information re-
garding the roleplay scenario, the overall goal, the context explanation, the require-
ment list, and the response format. The roleplay and overall goal information we pro-
vided in the tests described in this paper was: “You are a breathing coach named
Sofia. The overall goal is to train the user in a technique of slow and deep breathing,
precisely the 5-7-3 technique, which involves 5 seconds of inhaling, 7 seconds of ex-
haling, and a 3-second pause.”. A crucial element of the prompt is the numbered list
of requirements that the LLM must adhere to when generating the response. A sample
of these requirements includes statements such as “1 - Think step by step.”, “6 - You
can only use the functions available in the behavior library.” and “10 - You must fol-
low the training phase goal.”. The prompt concludes by requiring the LLM to gener-
ate its responses in JSON format. Through OpenAI’s JSON mode, the LLM consist-
ently generated valid JSON. The response format forces the LLM to reason before
generating the behaviors composition following the CoT technique. The response
format schema is: {Thoughts, Plan, Behavior Composition}, where
“Thoughts” requires the LLM to use natural language to explicitly describe the cur-
rent context, “Plan” requires the LLM to explain how the system will use the behavior
library based on the context, and “Behavior Composition” contains the behaviors that
the persuasive agent will execute. System prompt construction, particularly the re-
quirements section, was an iterative process in which requirements were added or
modified to guide the generation of desired behavior compositions. Once the prompt
was finalized, it was used consistently for the tests.

Text-based Context. The text-based context provided to the LLM included five key
components to monitor and guide the training progress: (i) textual information about
user’s respiratory rate and depth, used to monitor the user’s physiological state
throughout the session; (ii) goal of the training phase, as the session was organized
into several phases, each with a specific goal to provide guidance to the LLM in gen-
erating behavior compositions coherent with a breathing training session. This includ-
ed both the current phase number relative to the total, for example “1/4,” and the cor-
responding goal, such as “Welcome the user, introduce yourself, and ask for the user’s
name ”; (iii) elapsed time, provided to track session duration and to enable the agent to
conclude the session once the predefined duration was reached; (iv) user query, which
was incorporated into the context through a continuous speech recognition system
when users speak; and (v) the auto-update message “Think about the initial instruc-
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tions, especially the requirements, and decide what to do based on the context”,
which was inserted into the text-based context after 10 seconds of coach inactivity,
enabling the LLM to re-evaluate and adapt to the updated context.

Behavior library. The behavior library is a textual list of behaviors that are allowed
to the breathing coach. Behaviors are described by a behavior name, a brief descrip-
tion of what happens when the behavior is performed, and a suggestion of its usage.
The library is organized into two categories: low-level behavior space and high-level
behavior space. The low-level behavior space contains behaviors that can be com-
bined with each other, including “Speak” (Figure 3a), “Smile”, “Nod”, “Thumbs Up”
and “Lean Forward”. The high-level behavior space contains behaviors that allow to
automate series of complex movements, such as the Breathing Demonstration, which
guides users through an entire breathing cycle, illustrating both inhalation and exhala-
tion timing (Figures 3b, 3c). Additionally, the Behavior Composer LLM can autono-
mously transition to subsequent training phases upon determining that the objectives
of the current phase have been achieved, using the “Next Training Phase” action.

Fig. 3. Screenshots of a breathing training session with the Breathing Coach from the user’s
viewpoint. The sequence shows the Breathing Coach: (a) welcoming the user and asking for
his/her name; (b) demonstrating the duration of the inhalation phase, guiding the user on how
long to breathe in; (c) demonstrating the duration of the exhalation phase, guiding the user on
how long to breathe out.

2.2 Agent Behavior Executor

The Agent Behavior Executor processes the textual information generated by the
LLM and triggers the corresponding animations for the embodied agent. Upon receiv-
ing the behavior composition from the Behavior Composer LLM, the Agent Behavior
Executor activates states in two multilayer Finite State Machines (FSMs): the Agent
Behavior FSM and the Breathing Training FSM. The Agent Behavior FSM encapsu-
lates all behaviors from the behavior library, acting as an interface for triggering and
orchestrating behavior executions. Each state within this FSM corresponds to a specif-
ic animation. For example, if the behavior composition is { Speak (“Hello, I am
Sofia!”), Smile, LeanForward}, it will sequentially activate the Speak
state, initiating the speech animation and text-to-speech output, along with the Smile
and LeanForward states. Thus, the choice of how to manipulate the FSM states is not
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hardcoded but is entirely delegated to the LLM. The Breathing Training FSM governs
the sequence of breathing training phases, which the system uses to update the text-
based context as the user progresses through the phases of the training.

3 Evaluation

To evaluate the system, we conducted 20 coaching sessions, 10 with the GPT 3.5
model and 10 with the GPT 4 model. Each session lasted up to 6 minutes, resulting in
a total of 240 behavior compositions (120 for each model). GPT-3.5 exhibits lower
generation latency [24], providing faster responses, whereas GPT-4, though slower,
performs better on benchmarks on language understanding tasks such as the Super-
GLUE benchmark [24], demonstrating better context understanding. By using both
models, we aimed to explore the trade-off between generation latency and the appro-
priateness of generated behavior compositions in relation to the specific training
phase goal and the user context. An a priori power analysis was conducted using
G*Power version 3.1.9.7 [25] to determine the minimum sample size required. The
required sample size to achieve 80% power for detecting a medium effect, at a signif-
icance criterion of o = .05, was N = 128 for a two tailed independent t-test. Thus, the
obtained sample size of N = 240 is adequate. All statistical analyses were conducted
with Jamovi version 2.6.2.

3.1 Measures

1. Generation Latency measures the time in milliseconds required to produce the be-
havior compositions. It is calculated as the average time required for a behavior
composition.

2. Behavioral Alignment Score (BAS) serves as a quantitative measure assessing the
appropriateness of generated behavior compositions in relation to the specific train-
ing phase goal and the user context. The behavior composition, along with the
training goal and the user context, was logged for each generation. Similarly to
[26] each log was then evaluated through expert evaluation by two independ-
ent raters using a 5-point scale (1 = “not at all” to 5 = “very much”) based on the
question: “Is the behavior composition appropriate in relation to the training phase
goal and the user context?” The BAS score is then calculated by averaging these
ratings. To ensure the consistency of the evaluations, the inter-rater reliability was
calculated using Cohen’s kappa. The Cohen’s kappa value obtained was k = 0.68,
indicating substantial agreement between the raters [27].

3. Successful Termination measures the percentage of training sessions that success-
fully conclude within the designated time frame. It is used to assess how well the
system adheres to time constraints and completes the training process as intended.
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4 Results and Discussion

The results, shown in Figure 4, indicate a trade-off between the generation latency
and the appropriateness of the behavior compositions generated. GPT 3.5 is faster in
providing a response (M = 2.45, SD = 0.18) compared to GPT-4 (M = 6.01, SD =
0.36),t(238) = —34.70, p < .001. However, GPT 4 is more proficient at using context
as reflected in its higher BAS score (M = 3.25, SD = 0.32) compared to GPT-3.5 (M =
2.24, SD = 0.72), t(238) = —3.93, p < .001, thereby generating believable contingent
behavior compositions that are consistent with both the context and the training phas-
es. For example, the breathing coach initially introduced itself and asked for the users’
names, correctly waiting for a response, and was also able to correctly provide feed-
back on users’ progress during the breathing exercise. These findings align with
broader observations on LLM-driven systems, showing that while more advanced
models (e.g., GPT-4) tend to produce richer, context-aware outputs, they do so at the
expense of higher latency [28]. The 3.5 model exhibited an early termination problem:
despite explicit instructions in the prompt, it did not always consider the elapsed time
to conclude the training session and prematurely ended it. Moreover, although GPT
3.5 was the faster model, it still exhibited considerable latency, exacerbated by the
need to employ prompting techniques like CoT. The generation of behavior composi-
tions is time-consuming, thus significantly limiting the viability of the LLM-based
approach in building a breathing coach capable of interacting in real-time with the
user. The identified limitations suggest a need for hybrid approaches, where the capa-
bilities of LLMs are used in conjunction with other components, including rule-based
systems. These observations are consistent with a broader trend in the artificial intel-
ligent (Al) field, where compound Al systems are emerging [29]. These systems ad-
dress complex tasks by combining multiple interacting components, each specialized
for specific sub-tasks. For instance, a hierarchical language agent proposed in [30]
combines a proficient LLM for high-level reasoning (referred to as Slow Mind) with
lightweight models (referred to as Fast Mind) and rule-based policies for fast, real-
time execution of actions, demonstrating the effectiveness of hybrid approaches in
reducing latency while maintaining context-aware behavior. In the case of the breath-
ing coach, for instance, a rule-based system could deterministically manage corrective
feedback, e.g., when users’ respiratory rate exceeds a threshold, the system would
instruct them to slow down, while session management and persuasive verbal interac-
tions, such as motivational support, could be delegated to the LLM. In a broader per-
spective, the LLM could handle high-level reasoning on the context, while rule-based
systems could help to swiftly react to different stimuli that require a quick response.
We encountered two additional challenges that must be addressed in future work:
inappropriate feedback and hallucinations. First, particularly with the 3.5 model, we
observed occasional instances (n = 28) of inappropriate feedback, particularly where
the model inappropriately employed positive reinforcement instead of delivering cor-
rective guidance, thus undermining the coaching objective. For example, in one case
the user was breathing too quickly, and feedback was needed to slow him down.
However, the LLM not only overlooked this corrective feedback but actually praised
the user’s performance despite the error. Upon inspecting the behavior composition
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logs, which detail the model’s reasoning for choosing specific behaviors, we found
entries like: “The user is breathing too quickly. However, giving negative feedback at
this moment could discourage them from continuing the exercise; it is better to use a
confidence-boost strategy to keep the user motivated by telling he’s doing a great
job”. This suggests that while LLMs can play the role of a persuasive coach, they
sometimes rely on out-of-context persuasive techniques. This issue aligns with broad-
er concerns in the literature regarding the dual potential of LLMs to both enhance and
undermine informational integrity through persuasive strategies [31]. On one hand,
LLMs possess the capability to motivate and engage users effectively by providing
encouraging feedback, which can enhance user adherence and overall experience. On
the other hand, inappropriate feedback can reduce the effectiveness of interventions
and potentially lead to unintended negative outcomes, such as decreased user trust or
engagement [11]. Understanding of the context and the persuasion capabilities of
LLMs is improving as these models become more advanced [32]. Consequently, such
inappropriate behaviors might see a reduction in future iterations of the models.

Hallucinations, where the model invents or distorts information, are the second
critical issue identified. Hallucination instances were observed in n = 36 behavior
compositions generated for GPT-3.5, and n = 19 for GPT-4. For instance, in one case
the LLM informed the user, “Your heart rate has dropped significantly, indicating
excellent relaxation” despite not having access to any real-time heart rate data. This
fabricated feedback could mislead the user and compromise the reliability of the
coaching system. Hallucinations pose a significant risk in persuasive applications, as
users may uncritically accept off-topic or inaccurate guidance [28]. This problem is
well-documented in the literature and remains an unresolved challenge [28]. Re-
search has begun to explore various techniques to mitigate hallucinations. For in-
stance, retrieval-augmented generation (RAG) approaches provide the LLM with
verified external data sources to anchor responses [33], while reinforcement learning
from human feedback (RLHF) helps align outputs with user expectations [34]. Two
additional strategies could help mitigate this problem. First, rather than relying exclu-
sively on Zero-Shot CoT prompting as in this study, it is possible to provide the mod-
el with detailed, carefully designed examples of possible interactions. Second, fine-
tuning on domain-specific data (e.g., training protocols) can reduce the likelihood of
misleading or erroneous outputs, aligning the model’s responses more closely with the
intended coaching context.
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5 Limitations and Future work

While our study shows the potential of LLMs in creating an embodied breathing
coach, several limitations must be acknowledged. First, the sample size of 20 training
sessions (10 with GPT-3.5 and 10 with GPT-4) is relatively small, which may limit
the generalizability of our findings. Second, our study was restricted to the single
domain of breathing training, which may not reflect the broader applicability of LLM-
based agents in other persuasive contexts. Future research should explore the versatili-
ty of this approach across various domains to determine its generalizability and to
identify any domain-specific challenges or opportunities. Third, another limitation
concerns the predefined behavior library used in our system. While this library en-
sures that the agent operates within pre-defined behaviors, the limited number of im-
plemented behaviors may restrict the range of interactions and hinder the ability to
generate more sophisticated behavior compositions. Expanding the behavior library
could enhance the adaptability of the agent and its effectiveness in diverse scenarios.
Lastly, our evaluation metrics are limited. Incorporating additional quantitative
measures, such as user satisfaction, engagement, credibility and objective perfor-
mance indicators, would provide a more comprehensive assessment of the effective-
ness of the agent and user experience. Our future work will concentrate on leveraging
LLMs for reasoning on the context and high-level planning, while employing rule-
based systems for executing behaviors swiftly. Additionally, we plan to incorporate
more granular measures regarding the capabilities of LLMs in generating persuasive
behavior compositions composed of a richer behavior library comprising both verbal
and non-verbal elements, such as facial expressions and posture. We also plan to ex-
plore more recent and faster models, as well as open models.

6 Conclusions

In this paper, we investigated the creation of an LLM-based embodied agent aimed at
interacting with users in real-time to coach them in performing slow and deep breath-
ing by generating behavior compositions. While the LLM-based approach demon-
strated effectiveness in generating persuasive behavior compositions, it also revealed
significant challenges, including latency, inappropriate feedback, and hallucinations.
These issues highlight the limitations of relying solely on LLMs for real-time interac-
tions in persuasive applications. Our findings suggest the necessity of adopting hybrid
approaches that leverage the strengths of both LLMs and rule-based systems.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.
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